Гидроабразивная Резка Бетона: Этапы Большого и Сложного Пути

Гидроабразивная резка

Как говорится в пословице — вода камень точит. Если конечно она капает медленно, то процесс этот может занимать тысячелетия, но если поток воды значительно усилить, то, автоматически, происходит ускорение. Если же подавать воду под огромным давлением, то вода будет проходить сквозь материалы, как раскаленный нож — сквозь масло.

Разработано две принципиальные технологии использования воды для раскроя материалов. Водная резка и водно-абразивная или гидроабразивная резка.

Эти две технологии очень близки с той лишь разницей, что при водной резке подается только вода, а при гидроабразивной резке к воде подмешивается абразив.

Для того, чтобы вода могла резать, она должна подаваться со сверхвысоким давлением. Таковым считается давление примерно 4700 кг на квадратный сантиметр (4000 атмосфер) или более. Вода выходит через сопло диаметром 0,5 — 1,5 мм со скоростью примерно 900 — 1200 метров в секунду. Это в три раза превышает скорость звука. Усмирить такую мощность под силу только самой воде. Струя воды гасится при помощи наполненной ванны с водой глубиной в одни метр, без которой она прорезала бы все на своем пути.

Сама по себе вода легко разрезает мягкие материалы, такие как резина, пластмасса, поролон и так далее. Но когда речь идет о раскрое твердых материалов — сталь, титан, керамика, — в поток воды подмешивается абразив (как правило, гранатовый песок диаметром 0,4 мм).

Появление и внедрение гидроабразивной резки

Впервые идея возникла в Советском союзе 1935 году один российский инженер получил авторское свидетельство на новый способ резки твердых материалов — струей воды. Идея заключалась в том, чтобы создать такую силу воздействия воды на материал, чтобы она превосходила силу соединения между молекулами самого материала. Для этого требовалось давление в несколько тысяч атмосфер.

Американцы же утверждают, что именно они изобрели принцип водной резки. Правда, это не так, ибо американский «папа» этой технологии начал исследования только в 50-х годах прошлого столетия. Норман Франц, лесной инженер, искал новые методы разделки толстых деревьев на доски. Ему удалось добиться струй, выходящих под очень высоким давлением, способных резать дерево и другие материалы, но эти струи были краткосрочными.

Францу было трудно поддерживать высокое давление. По иронии судьбы сегодня водная резка мало используется для резки дерева. В 1979 году сотрудник американской корпорации Flow по имени Мохамед со странной фамилией Гашиш придумал добавлять в водный поток абразивный материал, что позволило резать практически любой материал.

В 1980 году гидроабразивная струя использовалась впервые для резки стали, стекла и бетона. В 1983 году была продана первая гидроабразивная система для резки автомобильного стекла.

Первыми технологию гидроабразивной резки широко применили авиационная и космическая промышленность, которые стали пользоваться ею для резки очень прочных материалов, таких как нержавеющая сталь, титан и композитных материалов, вроде углеволокна, используемых в авиации. С тех пор гидроабразивная струя используется для резки камня, керамики, в создании авиационных двигателей, в строительстве и в других областях.
Применение водоструйного метода для резки материалов

Компания WOMA использует метод абразивной резки струей воды высокого давления с 1974 года.

В 1974 году армированная бетонная стена фундамента была вырезана в центре по обработке данных посредством комбинирования струи воды и силикатного песка без вызывания вибрации – беспрецедентный случай в мире для того времени.

Основанная на современных разработках в области технологий сверхвысокого давления струя воды может быть использована в качестве режущего инструмента, например, в добывающей промышленности, в строительстве, в сфере технического обслуживания, в химической промышленности и при резке. С помощью абразивной резки можно разрушать следующие материалы: сталь, бетон, армированный бетон и керамику.

Основная идея абразивной водоструйной технологии высокого давления заключается в присоединении к струе воды мелких твердых частиц, которые и называются абразивом.

Как создается высокое давление при водной или гидроабразивной резке?
Можно использовать два типа насосов — прямой (Direct drive) и так называемые intensifier based (насосы с усилителем). Насосы прямого нагнетания давления работают по тому же принципу, что и насосы, создающие низкое давление, которые используются для чистки поверхностей (пример, реклама аппаратов Керхер?), только давление создается значительно более высокое. Однако intensifier based насосы создают давление на 10 — 25% большее и используются в большинстве систем гидрорезки и гидроабразивной резки.

Принцип «усиливающего» насоса заключается в том, что создается давление на поршень, который выталкивает воду из большой камеры через маленькое отверстие. За счет этого достаточно оказывать сравнительно небольшое усилие на поршень.

Однако сколь мощной ни была бы струя, сама по себе вода не может разрезать любой материал, либо у нее на этот процесс уйдет слишком много времени. Режущая способность абразивной струи в сотни, если не в тысячи раз выше, чем просто воды.

Внутри каждой системы гидроабразивной резки содержится система водной резки.
Струя воды, вылетающая со скоростью 1200 метров в секунду, разгоняет абразив. От размера песчинок зависит скорость резки и гладкость среза. Смешивающие трубы (mixing tube) бывают разных размеров, их срок «жизни» также различается. Их длина составляет примерно 7,6 см, внешний диаметр — 6 мм. Внутренний диаметр составляет от 0,5 мм до 1,5 мм. Самый распространенный диаметр — 1 мм.

Таким образом, расходные материалы, необходимые для водно-абразивной резки — это вода, абразив, сопло и труба для смешивания.

Основные преимущества гидроабразивной резки заключаются в том, что такой метод позволяет разрезать любой материал, избегая нежелательного термического и механического воздействия, вредных испарений. Этот метод экологически чист, пожаробезопасен, дешевле большинства других методов. Благодаря своим достоинствам методы водной и гидроабразивной резки становятся самыми популярными в мире.

Применение гидроабразивной резки

Технология водно-абразивной резки распространяется в большинстве стран самыми высокими темпами благодаря богатым возможностям и легкости управления. Производители осознают, что станки для водно-абразивной резки способны разрезать практически любой материал. Машинные цехи всех размеров осознают большую эффективность и продуктивность использования ВАР.

Главное достоинство гидроабразивной резки заключается в том, что этот метод позволяет разрезать любой материал толщиной до 25 см, избегая нежелательного термического и механического воздействия, вредных испарений, а изделия получаются аккуратными. Этот метод экологически чист, пожаробезопасен.

Технология гидроабразивной резки позволяет делать очень узкий разрез, что позволяет лучше использовать материал, так как разрезанные части можно точнее подогнать. Программное обеспечение для управления такими станками, как правило, довольно легко понять и зачастую требуется лишь несколько часов, чтобы научиться работать.

Водная резка хороша для разрезания мягких материалов и, как правило, используется (в США) для разрезания рулонов… салфеток и подгузников. Вам может показаться странным, но во время этого процесса на поверхности салфеток остается меньше воды, чем в результате прикосновения рукой или дыхания на нее.
Преимущества абразивного водоструйного метода резки материалов:

Резка возможна в любых положениях.
Небольшие размеры насадок.
Могут быть вырезаны любые формы.
Процесс резки регулируется и контролируется в течение всего действия.
Низкие реактивные силы, что позволяет механизировать/автоматизировать процесс.
Отсутствие значительного шума.
Отсутствие вибрации.
Отсутствие образований пыли, пара, газа и шлака.
Отсутствие термического и механического воздействия на отрезаемые или разрушаемые края.
Большая глубина резания за одну операцию.
Возможно разрезание сложных (смешанных) материалов одним режущим действием.
Возможно применение под водой.

Существует несколько основных способов резки и раскроя материала: лазерная, плазменная, механическая и гидроабразивная резка.

Гидроабразивную резку обычно сравнивают с лазерным или плазменным методом резки материалов, например, таких как металл. Но, в каждом методе есть свои достоинства и недостатки.

Лазерным методом металл можно разрезать намного быстрее, но гидроабразивная резка имеет холодный характер резки, а так же отсутствует термическое и механическое влияние на зону резки материала.

Полезная информация по гидроабразивной резке

Гидроабразивная резка — это вид обработки и резки материалов,в которой вместо режущего инструмента используется струя чистой воды или смеси воды и абразивного материала (гранатового абразива), выпускаемая из режущей головы с большой скоростью и под высоким давлением.

Видео полного процесса гидроабразивной резки снятое нашей компанией:

Особенности гидроабразивной резки:

  • Используется обычная вода, как следствие во время обработки отсутствует пыль, загрязнение, токсины.
  • В отличии от лазерной резки, станок осуществляет резку без повышения температуры заготовки, физические и химические свойства разрезаемого материала остаются неизменными. Идеально подходит для резки термочувствительных материалов.
  • Гидроабразивный станок способен резать сложные и толстотелые материалы, сохраняя хорошее качество реза.
  • Станок можно подключать к любой компьютерной системе управления в качестве оборудования для системы автоматизированного проектирования, вырезать любые сложные формы, картинки и текст. Управлять такой системой удобно и просто.
  • Точность станка обеспечивается системой цифрового управления, серво системой, шарико-винтовыми парами и линейными направляющими.
  • Защитные кожухи обеспечивают чистоту и целостность прецизионных деталей даже в неблагоприятной среде.

Немалую часть себестоимости резки составляют расходы на гранатовый песок. Цена гранатового абразива на российском рынке составляет от 20 до 35 тыс. рублей за тонну в зависимости от производителя. Расход песка на станке составляет от 10 до 25 кг. в час в зависимости от интенсивности резки. Сэкономить на нем можно, если иметь четкое представление, какие материалы можно резать чистой водой, а какие только с добавлением абразива, для этого давайте обратимся к таблице ниже.

Материалы, пригодные для резки чистой водой:

Материалы для гидроабразивной резки:

Бумага, картон и гафрокартон

Металлы, стали и сплавы

Текстиль, войлок, кожа

Камень (мрамор, гранит, лимизит и пр.)

Бетон и железобетон

Стекло (в т.ч. пуленепробиваемое)

Уплотнительные материалы и материалы для тепло- и шумоизоляции

Чем отличается насос прямого действия от насоса мультипликаторного типа ?

На данный момент в сфере гидроабразивной резки используются два типа насосов высокого давления: линейный насос-мультипликатор и роторный насос прямого действия. Как мультипликаторные насосы, так и насосы прямого привода обеспечивают качественную резку в течении долгого времени, но давайте разберемся чем же они отличаются.

Насос мультипликаторного типа

Насос прямого привода

Неопровержимое преимущество мультипликаторных насосов заключается в максимальном диапазоне давления, до 6200 бар и более при сдвоенной системе насосов высокого давления. Насос прямого привода не в состоянии достичь подобных мощностей. Насос высокого давления с мультипликатором способен резать предельно твердые или толстые материалы, например, титан или толстые бетонные плиты. И в случаях, когда станок для гидроабразивной резки подвергается высоким нагрузкам – например, в сложном многосменном режиме работы – следует выбирать мультипликатор, поскольку это технология более прочная, а компоненты – долговечнее. А если высоконапорные насосы должны быть объединены в сеть, то насос прямого привода вообще не рассматривается, поскольку эта технология не допускает подобного объединения. И, наконец, следует упомянуть, что применение мультипликаторной технологии рекомендуется и в тех случаях, когда процесс резки включает в себя большое количество циклов переключения. Это чаще всего касается использования чистой воды, если должно быть произведено большое число деталей с высокой скоростью резания, например, при резке резиновых уплотнений или при применении в пищевой отрасли. При этом эксплуатационники мультипликаторного насоса используют то преимущество, что давление воды поддерживается даже при закрытом вентиле и, благодаря этому, имеется в распоряжении сразу же после открытия вентиля. Стоит добавить, что в случае выхода из строя мультипликаторного насоса, он проще поддается ремонту и замене частей вышедших из строя.

В нашем каталоге представлены станки гидроабразивной резки только с качественными насосами высокого давления на основе мультипликатора. Так же если Вам требуется новый мультипликатор для Вашего станка, его Вы так же можете приобрести его у нас, для этого посетите наш каталог с запасными частями.

Режущая головка для гидроабразивного станка:

С помощью насоса высокого давления вода сжимается до необходимого давления и затем подается в режущую головку по трубопроводу. Режущая головка обеспечивает преобразование энергии воды, сжатой под высоким давлением, в кинетическую энергию высокоскоростной водноабрзивной струи и ее окончательное формирование в качестве режущего инструмента.

Схема режущей головы:

Вариации режущих голов для гидроабразивного станка:

3-ёх осевая режущая голова.

Традиционный раскрой по трем направлениям. Входит в стандартную комплектацию большинства станков. В некоторых режущих головах присутствует система автоматической прочистки после резки.

5-ти осевая режущая голова с компенсацией конусности реза и возможностью отклонения.

Система динамической компенсации конусности. Благодаря наклону режущей головы конус смещается в сторону детали, формируя ровный срез под углом 90°. Данная опция убирает потребность постобработки материалов после резки. Идеально подойдет для резки стекла, керамического пано, паркетного пола и тд.

5-ти осевая режущая голова 3D с возможностью резки деталей в трёх проекциях, ось А ±45°, ось С ±540°

Позволяет вырезать сложные детали в 3D проекции. Угол поворота головы обычно составляет ±45°, угол наклона (Ось A): ±45°, угол поворота (Ось C — круговая): ±540°(или бесконечное).

Приобрести режущую голову для Вашего станка, Вы можете на нашем сайте в каталоге с запасными частями.

Требования к качеству воды для гидроабразивной резки:

Подача воды для насоса высокого давления должна соответствовать следующим требованиям. Высокая концентрация растворенных твердых веществ, особенно кальция, диоксида кремния и хлоридов, будет влиять на срок службы компонентов НВД. При плохом анализе (графа минимум) воды требуется доукомплектовать станок системой умягчения воды, что бы увеличить ресурс запчастей.

Параметр

Минимум

Хорошее

Лучшее

Диоксид углерода (мг/л)

Свободный хлор (мг/л)

Общее количество растворенных твердых веществ, T D S(mg/l)

Электрическая проводимость [μS/cm]

Общая жесткость в пересчете на CaCO3 (мг/л)

Систему умягчения воды можно заказать у нашей компании, свяжитесь с нами и мы подберем её под Ваш станок.

Для осуществления реза на гидроабразивном станке используются следующие материалы:

  • Гранатовый абразив (используется однократно).
  • Рубиновые сопла формируют струю воды (ресурс 20-30 часов).
  • Фокусирующие трубки для разгона частиц абразива (ресурс 130-200 часов).
  • Ремонтные комплекты клапанов, динамические уплотнения и т.д (ресурс зависит от загруженности станка).
  • Гидравлическое масло 200 литров (меняется каждые 1000-1500 часов).
  • Вода для резки в среднем 3.79 л/мин.
  • Электроэнергия (+/- 23кВт в час).

Словарь терминов гидроабразивной резки:

Зернистость абразива.

Значения зернистости не соответствуют точному размеру частиц, а означают то или иное распределение частиц различного размера. Абразив с зернистостью 80 будет включать какое-то количество более крупных и более мелких частиц, чем те, что точно соответствуют ситу с ячейками размером 80. Зернистость обычно определяется в результате прохождения абразива через ряд сит, размер ячеек которых уменьшается сверху вниз. При обработке материалов системами абразивной гидроабразивной резки обычно используются абразивы с зернистостью от 220 до 50, чаще всего- 80 и 120. Чем больше значение зернистости (номер сита), тем мельче частицы.

Насос-мультипликатор.

Насос-мультипликатор изначально использовался для гидроабразивной резки и является наиболее распространенной технологией. Насосы-мультипликаторы создают давление воды, используя принцип умножения давления. Принцип умножения давления или соотношения реализуется за счет разницы площади сечения поршня и плунжера, позволяющей повышать давление. Гидравлическое масло под низким давлением действует на поршень, площадь сечения которого в 20 раз больше, чем площадь сечения плунжера, который создает давление воды. Следовательно, давление увеличивается (умножается) в двадцать раз. Например, в случае соотношения площади поперечного сечения поршня и плунжера 20:1 давление масла 207 бар обеспечивает давление воды 4100 бар.

Читайте также:  Виды складской техники,описание и стоимость техники для склада

Обратный клапан.

Обратные клапаны применяются в насосах систем гидроабразивной резки. Они обеспечивают прохождение среды, в данном случае воды, только в одном направлении. Например, вода под небольшим давлением поступает по обычному шлангу низкого давления в насос для создания давления. После создания давления обратный клапан низкого давления не позволяет воде проходить обратно, так как это сразу приведет к разрыву шланга низкого давления. Вместо этого открывается другой обратный клапан, позволяющий воде под большим давлением безопасно поступать по стальным патрубкам высокого давления к режущей головке.

Режущая головка.

Режущая головка гидроабразивной резки преобразует давление воды в скорость при прохождении через сопло из драгоценного камня. В случае резки с помощью гидроабразивной резки с абразивом режущая головка также имеет смесительную камеру и трубку. Иногда говорят о наличии на режущей головке запорного клапана. Этот клапан находится перед соплом и позволяет оператору открывать или перекрывать поток воды.

Скорость потока.

При гидроабразивной резке повышение давления повышает скорость струи воды с абразивом. При выходе потока из сопла все зависит от скорости. После прохождения водой сопла в потоке не остается давления. В случае абразивной гидроабразивной резки по мере повышении скорости потока ускоряется процесс резки. Чем меньше диаметр струи, тем меньше требуется абразивного материала.

Фокусирующая трубка (смесительная трубка).

Используемая в гидроабразивной резке смесительная трубка является конечным элементом режущей головки. Наиболее часто используются смесительные трубки с внутренним диаметром 1,016 мм и длиной 101,60 мм. С такими трубками обычно используется абразив зернистостью 80. При обычной резке смесительная трубка из высококачественного материала (композитный карбид с очень малым количеством вяжущего вещества для обеспечения максимальной стойкости износу) изнашивается со скоростью увеличения диаметра примерно на 0,025 мм за 6 — 8 часов работы, при этом износ происходит концентрически.

Водяное сопло.

Для создания потока, давление воды необходимо преобразовать в скорость. Это преобразование происходит при прохождении воды через мельчайшее сопло из драгоценного камня. Отверстие в сапфире, рубине или алмазе имеет диаметр от 0,08 до 0,51 мм (обычно 0,36 мм). Чем больше диаметр сопла, тем больше воды и энергии требуется для поддержания давления.

Диаметр сопла не определяет максимальное давление воды — максимальное давление определяется только мощностью и конструкцией насоса. Чтобы обеспечить целостность потока, верхняя поверхность сопла имеет очень острую кромку. Неровная или скругленная кромка будет создавать неровную, турбулентную струю, которая может иметь угловую траекторию, что недопустимо. Сопло может разрываться струей воды по двум основным причинам. Первая — на соме может откладываться кальций, который скалывается и приводит к выходу сопла из строя. Вторая — кромка сопла может стать скругленной или расколоться под действием частиц. Сопло либо находится в хорошем состоянии, либо выходит из строя. Постепенный износ встречается редко. Сопла из сапфира и рубина служат 40 — 200 часов, в зависимости от качества воды и давления. Алмазные сопла примерно в 8-10 раз дороже рубинов или сапфиров, но их срок службы тоже в 8-10 раз больше.

Ширина реза.

Ширина реза — это ширина разреза, паза или выемки, полученной в результате резки. В случае гидроабразивной резки с абразивом на значение ширины реза непосредственно влияет диаметр смесительной трубки. Ширина реза примерно на 10-20% больше диаметра смесительной трубки.

Таким образом в случае смесительной трубки диаметром 0,76 мм ширина реза будет составлять 0,84 мм. Конечно, по мере увеличения диаметра трубки ширина реза увеличивается. За 8 часов прохождения струи диаметр трубки увеличивается примерно на 0.25 мм. Малая ширина реза гидроабразивной резки является ключевым показателем, позволяющим изготавливать сложные детали. Для гидроабразивной резки без абразива ширина реза составляет от 0,076 до 0,381 мм, а для гидроабразивной резки ширина реза составляет м 0,381 до 1,778 мм (обычно 1,016 мм).

Полезные советы по обслуживанию и уходом за гидроабразивным станком :

  • В случае необходимости замены каких-либо частей или деталей установок гидроабразивной резки следует приобретать только детали надежных проверенных производителей. Проверенные и качественные детали Вы можете заказать у ГК «Элемент».
  • Рекомендуется периодически производить резервное копирование данных системы ЧПУ, чтобы в случае необходимости была возможность их полного восстановления.
  • В ситуации, когда оператор самостоятельно не может выявить причину возникшего при эксплуатации сбоя, следует связаться со специалистами компании, поставившей станок, или с производителем.
  • О необходимости технического осмотра клапана говорит достаточно сильное его нагревание, т.к. повышение температуры свидетельствует о невысоком уплотнении клапана.
  • В целях предотвращения утечки при соединении стальных труб винтовую резьбу на них следует сделать на три нарезки выше прокладки.
  • Когда не представляется возможным определить неисправность, можно сделать следующее: выполнить демонтаж цилиндра ВД и той части, в которой находится вода; открыть масляный насос; определить локализацию повреждения, пронаблюдав за масляным цилиндром.
  • Для определения нормальной работы перепускного клапана необходимо после нормального запуска нажать и удерживать кнопку «Пуск». Произойдет остановка устройства, но при этом будет достигнуто максимальное давление. Если датчик давления масла покажет реально достигнутое во время эксплуатации давление, то перепускной клапан работает нормально.
  • После технического обслуживания нагнетателя при первом его включении рекомендуется медленно поднимать давление до рабочего уровня в целях защиты оборудования.
  • При установке следует смазать уплотнительные кольца в нагнетателе.
  • Рекомендуется смазывать все соединения.
  • Чтобы не повредить сопло при его установке, запрещается сильно затягивать винт.
  • С периодичностью в 2-3 дня рекомендуется слегка ослаблять соединения в цилиндрах ВД и НД во избежание их застревания.
  • Появление ошибки «ID=20» в ПО NEWCAM говорит об ошибке программы, для исправления которой требуется переустановка.
  • Перед каждым запуском оборудования следует проверять все части и детали станка, связанные с электричеством и водой.
  • Запрещено эксплуатировать оборудование при температуре окружающей среды от 0°С и ниже, т.к. в этом случае есть угроза замерзания отдельных частей и узлов машины.
  • Эталонным расстоянием между обрабатываемым материалом и режущей головкой считается дистанция 3-5 мм.
  • При срабатывании любого сигнального устройства происходит автоматическое запирание резервуара с высоким давлением.
  • Если была найдена бракованная деталь, следует сообщить ее заводской номер, продолжительность использования и указать признаки неисправности.
  • Уменьшение давления на нагнетателе способно заметно продлить срок службы уплотнительных колец.
  • Срок службы оборудования и эффективность резки можно повысить путем постоянного контроля за давлением.
  • Уменьшать давление рекомендуется при резке хрупких материалов, например, стекла.
  • В случае частого использования USB-интерфейса ЧПУ рекомендуется использовать дополнительный USB-кабель, чтобы избежать повреждения самого интерфейса.
  • Чтобы не допустить вспучивание при резке тонких материалов, рекомендуется использовать специальный сотовый настил, который Вы можете приобрести, обратившись в нашу компанию.

Твердение цемента

Цемент – популярный строительный материал, получаемый искусственным путем. Он представляет собой мелкодисперсный порошок, который при взаимодействии с водой превращается в пластичную массу, способную затвердевать даже в условиях высокой влажности. Физико-химический процесс взаимодействия цемента с водой называется гидратацией. В результате его протекания растворы и смеси, изготовленные на базе цементного вяжущего, после твердения приобретают высокую прочность, водонепроницаемость, устойчивость к температурным перепадам.

Гидратация цемента – особенности процесса

Гидратация – это необратимый процесс, при котором молекулы воды соединяются с молекулами минералов, входящих в состав цемента. В результате таких взаимодействий образуется пластичная масса, которая после затвердевания преобразуется в камнеподобное твердое тело.

В нормативной документации указываются допустимые водоцементные соотношения, которые зависят от применяемой марки цемента и требуемых характеристик получаемых продуктов. При достаточном количестве химически связывается примерно 25 % воды, остальная жидкость переходит в физически связанное состояние. Введение в материал воды в количестве меньше допустимого приводит к неполной гидратации, а больше допустимого – к образованию пор. В обоих случаях прочностные характеристики конструкции снижаются.

Основные стадии гидратации

Первая стадия гидратации цементного вяжущего – схватывание, протекающее в первые часы после затворения сухих компонентов водой. Время начала схватывания и скорость протекания этого процесса определяют следующие факторы:

  • Температура окружающей среды. Чем она выше, тем быстрее протекает процесс. При комнатной температуре он длится до трех часов, при высоких температурах, созданных в камерах пропаривания, – до 20 минут. При 0 °C схватывание может занять до 20 часов.
  • Состав вяжущего – номенклатура и соотношение минеральных компонентов, применяемые добавки. По ГОСТу 30515-2013 выделяют по скорости схватывания при стандартных условиях (+20 °C, относительная влажность – 75 %) три категории цементов: медленно схватывающиеся (начало процесса – через 2 часа после затворения), нормально схватывающиеся (начало схватывания – от 45 минут до 2 часов после затворения), быстро схватывающиеся (начало схватывания – до 45 минут после затворения цемента водой).
  • Тонкость помола – чем порошок мельче, тем быстрее происходит схватывание.

Ненадолго отложить начало схватывания позволяет перемешивание пластичного материала. В вязком продукте даже при перемешивании через определенное время начинаются необратимые процессы, которые негативно влияют на прочность отвердевшего элемента. Строители называют такое явление «свариванием бетона». Скорость схватывания и последующего твердения можно изменить введением в состав раствора или бетона пластификаторов и других добавок.

Следующий после схватывания более длительный этап – твердение цемента. Этот процесс, который обычно начинается в течение суток после начала гидратации, может протекать в течение нескольких лет. В течение первых 7 дней созданная конструкция приобретает примерно 70 % прочности. Через 28 дней после заливки раствор или смесь набирают марочную прочность. Она составляет примерно 90-95 % от максимального показателя, для достижения которого требуется несколько лет.

Для получения качественного конечного продукта обеспечивают нормальные условия твердения цемента. Для этого необходимо:

  1. Оградить конструкцию от малейших механических воздействий, поскольку связи, созданные на начальных этапах гидратации, – непрочные. Они легко разрушаются и восстановлению не подлежат.
  2. Первые 2-3 недели для нормального протекания в гидратации создавать влажную среду и оберегать конструкцию от прямого воздействия солнечных лучей.
  3. Не допускать резких перепадов температуры. Для этого конструкцию засыпают небольшим слоем песка или опилок, укрывают утепляющими матами.

Такие меры, принятые во время твердения цемента, позволят снизить усадку конструкции, избежать появления трещин и деформаций.

Зависимость процесса гидратации от химического состава цемента

Механизмы схватывания и твердения цемента зависят от номенклатуры и процентного соотношения компонентов вяжущего. Некоторые из них начинают взаимодействовать с водой на начальной стадии гидратации, другие – через определенный промежуток времени.

В состав портландцемента входят:

  • C2S – двухкальциевый силикат. Этот компонент вступает в реакцию с водой не сразу, а примерно через месяц после набора продуктом марочной прочности. Он положительно влияет на прочностные показатели бетона в долгосрочной перспективе. Применение пластификаторов ускоряет вступление двухкальциевого силиката в реакцию твердения цемента.
  • C3S – трехкальциевый силикат. Этот компонент участвует во взаимодействии с водой с самого начала приготовления смеси или раствора и в течение всего периода гидратации. Но наибольший вклад он вносит в период набора марочной прочности материала.
  • C3A – трехкальциевый алюминат. Способствует нарастанию прочности материала в первые дни твердения. В более поздний период он перестает работать.
  • C4AF – четырехкальциевый алюмоферит. Вступает в действие уже в ходе твердения. Улучшает характеристики бетона на самых поздних сроках набора прочности.

Как можно ускорить или замедлить схватывание и твердение цемента

При проведении строительных работ часто возникают ситуации, требующие сокращения времени схватывания и твердения цемента, решить эту проблему позволяет применение специальных добавок. Они понадобятся при проведении бетонирования в зимних условиях или при необходимости увеличить темпы строительства.

Наиболее популярные присадки-ускорители твердения цемента:

  • 4 %-е нитрат кальция или нитрат натрия, нитрит-нитрат кальция или хлорида кальция, нитрит-нитрат сульфата натрия;
  • 2 %-й сульфат натрия;
  • 2 %-й хлорид кальция – используется для армированных конструкций;
  • 3 %-й хлорид кальция – предназначен для неармированных бетонных элементов.

Замедлители гидратации цемента используются в основном при возведении масштабных конструкций – крупноразмерных фундаментов, чаш бассейнов, гидротехнических и подземных объектов.

Функции замедлителей выполняют пластификаторы и гиперпластификаторы. Применение таких добавок позволяет сохранить подвижность бетонных растворов и их рабочие характеристики в течение 24-48 часов после затворения вяжущего водой.

Гидратация цемента – важный процесс, который должен протекать с соблюдением правил, установленных государственными нормативами и проектной документацией для конкретного строительного объекта. Благодаря разработке широко спектра добавок стало возможным регулирование в широких пределах начала и скорости схватывания пластичного материала, его подвижности, прочности на разных стадиях твердения, коррозионной стойкости и других характеристик.

  • Строитель с 20-летним стажем
  • Эксперт завода «Молодой Ударник»

В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.

Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.

Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.

Что такое гидратация цемента и для чего нужно знать процессы, происходящие с ним

Гидратация цемента – это процесс прохождения реакции между компонентами смеси и водой. Без воды бетонный раствор получить не удастся, так как именно при ее добавлении начинается стадия схватывания цемента, а потом и твердения. Эти два этапа считаются основными для приобретения смесью заявленных характеристик (в первую очередь прочности, а также других важных параметров).

Согласно стандартам, начало схватывания портландцемента должно наступать через 45 и более минут после замеса смеси. После того, как процесс схватывания завершился (до 3 часов по регламенту), начинается твердение цементного раствора. Это более длительный процесс, который может занимать годы.

Марочной прочности бетонная смесь достигает через 28 дней, но и по истечении этого периода процесс твердения и набора камнем прочности продолжается.

Знать о том, каким образом проходит схватывание и твердение портландцемента, нужно обязательно. Уделив внимание этим этапам, удастся избежать ошибок при замесе и заливке, которые часто приводят к потере раствором клеящей способности, понижению прочности, деформациям и другим неприятным последствиям. Немаловажны эти знания и для производства, использования разнообразных добавок к цементу, которые меняют определенные характеристики и свойства монолита, способны продлевать или сокращать стадии.

Гидратация – что это такое

Гидратация цемента – это физико-химический процесс связывания воды и ингредиентов цементного порошка. Тут стоит внимательнее изучить состав цемента и понять, каким образом взаимодействуют с водой различные компоненты, как они влияют на сроки схватывания цемента и другие характеристики.

Компоненты, входящие в состав цемента:

  • С2S – двухкальцивеый силикат
  • С3S – трехкальциевый силикат
  • С3А – трехкальциевый алюминат
  • С4АF – четырехкальциевый алюмоферит

Влияние компонентов на гидратацию:

  1. Двухкальциевый силикат начинает работать через месяц после затвердения монолита. Все время он пребывает в покое, ожидая очереди. Специальные пластификаторы, добавляемые в смесь, позволяют существенно сократить этот период покоя без риска потери прочности бетоном. Данный компонент работает в долговременной перспективе, положительно влияет на укрепление бетонного монолита.
  2. Трехкальциевый силикат работает все время существования цемента. Он является основой смеси, запускает процесс гидратации. При его прохождении выделяется тепло, значительно повышая температуру раствора.
  3. Трехкальциевый алюминат в ответе за процесс схватывания, так как является самым активным минеральным компонентом и обеспечивает нарастание прочности бетона на протяжении первых дней. Дальше он перестает работать.
  4. Четырехкальциевый алюмоферит минимально воздействует на процесс набора прочности бетона и его твердение, но все равно очень важен в составе. Он работает в финале, когда затвердевание цемента уже запущено, улучшая характеристики и завершая процесс.
Читайте также:  Держатель для душа настенный своими руками: мастер-класс

Все минеральные составляющие цемента важны для его качества и правильного прохождения процесса гидратации. При смешивании портландцемента с водой в составе сразу создаются новые внутрикристаллические связи, демонстрирующие постепенно нарастающую прочность и доводящие бетон до состояния искусственного камня.

Ввиду того, что сроки схватывания цемента невелики и составляют в норме от 45 до 90 минут, готовить смесь нужно непосредственно перед использованием, чтобы успеть залить и выполнить все работы до начала достижения реакцией того этапа, когда работать со смесью уже невозможно (трудно заливать) или бесполезно (понижается уровень прочности).

Для полного прохождения реакции гидратации соотношение объемов цемента и воды обычно берут равное 3:2. Химически связывается до 25% молекул воды, остальные же остаются в гелевых порах бетона, пребывая в физически связанном виде. Уменьшение объема воды приведет к неполной гидратации, повышение – к появлению капиллярных пор в процессе связывания, что понижает прочность. Точные объемы составляющих всегда указываются в инструкции к цементу или рецептуре приготовления конкретной марки бетона.

Схватывание цемента

Стандартные сроки схватывания цемента:

  • При комнатной температуре – до 3 часов
  • При низкой температуре – до 20 часов
  • При высокой температуре (если бетон находится в камере пропаривания) – до 20 минут

Существуют разные типы цемента, которые выделяют в соответствии со временем схватывания. Медленный цемент начинает схватываться по истечении 2 часов после замеса, средний – через 45-120 минут, быстрый – через 45 минут. Даже если условия неблагоприятные для прохождения реакции, цемент схватывается максимум за сутки.

После того, как бетон схватился, он еще не обладает всеми параметрами по стандарту и продолжать строительные работы запрещено. Бетон может разрушаться даже при минимальных нагрузках, терять характеристики, неравномерно застывать и т.д. Поэтому в процессе набора прочности цемента нужно прекратить работы и обеспечить идеальные условия.

Процесс твердения цемента

Это второй и более длительный этап, который следует сразу за схватыванием. Твердеть цемент может на протяжении многих лет. Максимальных (100%) показателей прочности смесь достигнет через несколько лет, но уже через 28 суток набирает большую часть (до 90-95%), пригодных для выполнения дальнейших работ и эксплуатации.

Обычно процесс твердения цемента запускается через сутки после начала реакции гидратации. Сначала бетон не прочный и подвержен негативному воздействию среды: частицы цемента уже кристаллизировались, скрепили заполнитель смеси вокруг себя, но пока связи чрезвычайно хрупкие и могут легко разрушиться.

Минимальные механические воздействия разрушают связи и восстановлению они не подлежат. Так, если походить по твердеющей стяжке, соединения разрушатся и уже никогда не схватятся: в местах, где было воздействие, в скором времени бетон начнет высыпаться, трескаться и крошиться.

Для обеспечения нормальных характеристик бетона застывания его нужно дожидаться правильно – в первые 14-20 дней создать влажную среду, брызгать водой при необходимости, защищать от ультрафиолета. Бетон должен застыть, но никак не высохнуть (в таком случае не избежать трещин, деформаций, увеличения усадки и других неприятностей).

Гидратация цемента – самый важный процесс, который должен проходить по технологии. Поэтому до начала работы с раствором необходимо правильно определить водо-цементное отношение, пропорции компонентов, изучить инструкцию и обеспечить раствору идеальные условия для прохождения всех реакций.

Строй-справка.ру

Отопление, водоснабжение, канализация

Навигация:
Главная → Все категории → Бетонная смесь

Под гидратацией понимают реакции клинкерных составляющих с водой (присоединение води), причем образуются твердые новообразования (гидраты), которые заполняют первоначально залитый цементом и водой объем плотным наслоением гелевых частиц, вызывая тем самым упрочнение.
Таким образом, без воды твердение невозможно.

Первоначально жидкий или пластичный цементный клей превращается в результате гидратации в цементный камень. Первая стадия этого процесса называется загустеванием, или схватыванием, дальнейшая—упрочнением, или твердением.

Твердение цемента — очень сложный физико-химический процесс, который здесь будет рассмотрен упрощенно. Гидратацию рассмотрим в двух аспектах: как пространственный процесс (какие объемы занимают новообразования и какую структуру они имеют) и как химический процесс (каков состав новообразования).

Гидратация как пространственный процесс. Ответ на вопрос о том, какие образования возникают при гидратации, дан на рис. 19, где представлены продукты гидратации, возникающие в разное время. Одновременно показана кинетика нарастания прочности.

Можно различить следующие процессы.

Цементные частицы в виде дробленых зерен окружены водой затворе-ния, объем которой относительно велик (50—70 объемных процентов). Этот объем заполняется новообразованиями, чтобы возникла прочная структура (цементный камень). Благодаря химическим реакциям с водой уже через несколько минут возникают как на поверхности зерен, так и в воде иглообразные кристаллы а. Через 6 ч уже образуется так много кристаллов, что между цементными зернами возникают пространственные связи (б — в нижней части рисунка два крупных кристалла образуют двумя зернами цемента).

К этому моменту практик говорит, что цемент «схватывается». Через 8—10 ч весь объем между постепенно уменьшающимися зернами цемента заполнен скелетом иглообразных кристаллов, который вследствие возникновения из С3А называется также «алюминатной структурой». Будучи до сих пор пластичной, масса начинает застывать, и происходит быстрое нарастание прочности. В оставшихся пустотах возникают одновременно, но сначала гораздо менее интенсивно продукты гидратации клинкерных минералов C3S и C2S. Последние образуют гомогенный чрезвычайно тонкопористый ворс из очень малых кристаллов, так называемую силикатную структуру в. Значение этой структуры все более увеличивается. Она является собственно носителем прочности цементного камня и приблизительно через сутки начинает вытеснять алюминатную структуру. В возрасте 28 сут (обычный срок испытания цемента и бетона) обнаруживается только силикатная структура г.

Кроме того, видны и неиспользованные цементные зерна (в — сверху, в середине). К этому времени процесс гидратации еще не закончен, в ряде случаев он может продолжаться годы. Возникновение продуктов гидратации рассматривают как гелеобразование, а продукты гидратации — как гель. Скорость, с которой протекают эти процессы, зависит от: Ф крупности цементных зерен (тонины помола цемента): 9 минерального состава клинкера цемента; – количества воды, которым замешивается цемент; – температуры гидратации;
-введения добавок (разд. 2.4),

Рис. 20. Гидратация цемента в цементный клей (представлена на примере объемных изменений цементного клея, состоящего из 100 г Цемента и 40 г воды — ВЩ = 0,4)

Для полной гидратации цементного зерна необходимо присутствие 0,4-кратного количества воды от его массы. Из нее только 60% (т. е. 0,25 массы цемента) связывается химически. Остальные 40% исходной воды остаются в порах геля (гелевые поры) слабо связанными. Размер гелевых пор около 3-10

7 мм. Они неизбежны и служат причиной тонкопористого строения гелевой массы. При химическом связывании вода, в какой-то мере, претерпевает объемную контракцию, которая составляет приблизительно ‘Д ее первоначального объема. Поэтому плотный обьем геля (без пор) на такую величину меньше суммы объемов исходных компонентов цемента и воды. Этот процесс называют усадкой, а освобождающийся в цементном камне объем — объемом усадки. При наличии воды именно этот объем пор заполняется водой. При полной гидратации цементного клея получаем гель, объем которого примерно на 30% состоит из пор. Схематически объемные изменения представлены на рис. 20.

До сих пор мы исходили из того, что цементный клей состоит из 1 ч. массы цемента и 0,4 ч. массы воды. На практике это не всегда так. Если количество цемента больше, то количество воды будет недостаточном, чтобы полностью гидратировались цементные зерна, и в цементном камне останутся непрореагировавшие зерна цемента.

Рис. 21. Объемные соотношения в цементном камне при различном В/Ц и максимально возможной степени гидратации (диаграмма и схема)
1 — объем гелевых пор; 2 — объем капиллярных пор; 3 — объем усадочных пор; 4 — масса геля; 5— неиспользованный цемент; 6 — вода; 7 — цементное зерно; 8 — капиллярные поры (вода)

При большем количестве воды часть ее не участвует в процессе гидратации и образует в цементном камне так называемые капиллярные поры диаметром около Ю-3 мм, которые на несколько порядков больше гелевых пор. Примерно таких же размеров достигают и пустоты, возникающие в результате уже упомянутой усадки. Таким образом, соотношение масс воды л цемента в значительной мере определяет структурные отношения в цементном камне.-Пользуясь этим соотношением, можно определить важнейшие физические свойства цементного камня. Поэтому соотношение масса воды =водоцементное масса цемента отношение (В/Ц) имеет определяющее значение в технологии бетона.

На рис. 21 представлены объемные соотношения при различных значениях В/Ц и предельно возможной степени гидратации. Можно видеть, что суммарная пористость цементного камня тем больше, чем больше значение В/Ц (другими словами, чем меньше цемента в цементном клее). Эти схемы и диаграмма приведены с целью наглядного представления для различных В/Ц, хотя и не вполне отвечают действительности.

Все изложенное – здесь позволяет вывести некоторые важные закономерности, характерные для цементного камня: – процесс гидратации протекает постепенно; – получающийся в результате цементный камень, хотя и является твердым телом, но имеет тонкопористую структуру; – в цементном камне различают поровое пространство усадки и геля(которые неизбежны) и капиллярное поровое пространство (возникающее в увеличивающемся объеме, если цементный клей содержит более 0,4-кратного по отношению к цементу количества воды, т. е. если он подвержен влиянию водоцементного отношения).

По значению В/Ц цементного клея можно оценить пористость возникающего из него цементного камня и сделать выводы о его физических свойствах.

Гидратация как химический процесс. Твердение, представленное как пространственный процесс, теперь рассмотрим как химический процесс. Из разд. 2 известно, что цемент в основном состоит из четырех клинкерных минералов: C3S, C2S, C3A, C4AF.

Возникающие таким образом продукты гидратации представляют собой уже упомянутый гель. Для простоты обозначают их так же, как и клинкерные минералы, из которых они возникли (например, силикат кальция — гидросиликат кальция). Продукты гидратации отдельных минералов имеют специфические свойства, знание которых необходимо для дальнейшего понимания процесса твердения.

Анализ уравнений реакции позволяет сделать некоторые важные заключения. Во-первых, при гидратации возникают совершенно новые вещества. В процессе взаимодействия клинкерных минералов C3S и СгЗ с водой образуются гидросиликаты кальция и, кроме того, гашеная известь [Са(ОН)2], остающаяся внутри цементного камня. Этому явлению мы обязаны тем, что помещенная в цементный клей сталь не ржавеет, благодаря чему стало возможным существование железобетона. Кроме того, следует помнить и о том, что при гидратации выделяется тепло.

Это практик обязательно должен знать. И особенно следует помнить об этом при выборе цемента для возведения определенных конструкций и при выборе той или иной технологии изготовления бетонных сооружений. Продукты гидратации клинкерных минералов различаются также по прочности. Из рис. 22 видно, что главными носителями прочности являются силикаты кальция.. Особенно интересно, что клинкерный минерал с быстрым нарастанием прочности (C3S) выделяет большее количество тепла (502 Дж/г), чем клинкерный минерал с более медленным нарастанием прочности (C2S — 206 Дж/г).

Продукты гидратации клинкерных минералов различаются и по химическому составу.

Продукт гидратации называется этт-рингитом и раньше из-за своей палочковидной формы и вредного влияния назывался «цементной бациллой». Для этой реакции характерно, что присоединение 32 молекул воды вызывает сильное приращение объема по сравнению с объемами исходных компонентов: СзА и гипса. Увеличение объема безопасно до тех пор, пока оно происходит в пластичной матрице. В свежезамешенном цементном клее образование эттрингита вызывается с целью регулирования скорости твердения.

Рис. 22. Нарастание прочности клинкерных минералов

Механизм действия можно себе представить следующим образом. Очень быстро возникающие кристаллы эттрингита образуют оболочки вокруг цементных зерен. При этом затрудняется доступ воды и замедляется процесс гидратации. Без добавки гипса получился бы мгновенно схватывающийся цемент — «быст-ряк». Объемное расширение опасно, когда оно происходит в уже затвердевшем цементном камне (бетоне).

При этом наблюдается 4,6-кратное увеличение объема. Подобные реакции в затвердевшем цементном камне приводят к возникновению напряжений, нарушению структуры и ее разрушению (сульфатная коррозия). Поэтому для бетонных объектов, подверженных сульфатному воздействию, следует применять цементы, бедные СзА, чтобы ограничить или исключить образование эттрингита. Итак, при гидратации клинкерных минералов C3S и C2S образуется помимо гидросиликатов кальция гашеная известь Са(ОН)2, .Она предотвращает развитие коррозии стали, помещенной в цементный камень; – в процессе гидратации клинкерных минералов выделяется разное количество тепла; – в результате гидратации клинкерных минералов образуется искусственный камень с различной прочностью; – продукт гидратации С3А неустойчив по отношению к сульфатам. Возникает эттрингит, причем изменение объема может привести к разрушению цементного камня (сульфатная коррозия); – в зависимости от поставленных задач в строительстве применяются цементы с различной долей каждого из клинкерных минералов, причем в качестве основных критериев при выборе служат четыре приведенных выше.

Навигация:
Главная → Все категории → Бетонная смесь

Что такое гидратация цемента?

Необратимый процесс, во время которого бетон теряет свою подвижность, именуют гидратация цемента. Это весьма важный, определяемый нормативами показатель. Он выявляет качество материала.

Гидратация цемента — что это такое

Этим термином обозначают физико-химический процесс, при котором происходит связывание компонентов цементного порошка с жидкостью. Чтобы разобраться в особенностях этого действия, нужно скрупулезно исследовать состав цемента. Только тогда получится понять, как взаимодействуют ингредиенты порошка с водой, что влияет на период схватывания цемента, изучить остальные характеристики стройматериала. В его состав включены активные добавки минеральной природы, благодаря которым бетон медленно набирает требуемый уровень своей прочности. Какой бы марки и типа не был цемент, он содержит в себе четыре минеральных вещества:

  • двухкальцивеый силикат;
  • трехкальциевый силикат;
  • трехкальциевый алюминат;
  • четырехкальциевый алюмоферит.

Рисунок 1. Химический состав бетона

Влияние компонентов на гидратацию

Каждый из таких компонентов чрезвычайно важен, все они обладают специфическими характеристиками, помогающими влиять сначала на схватывание, а затем и твердение цемента. Одни начинают незамедлительно взаимодействовать с влагой, иные действуют постепенно, спустя определенное время. Рассмотрим, как на гидратацию влияет каждый ингредиент:

  • Двухкальциевый силикат вступает в работу только спустя месяц после момента затвердения бетона. До этого он не участвует в процессе, ожидая своей очереди. Наличие специальных пластификаторов, присутствующих в бетонной смеси, помогает значительно сократить период бездействия без риска ухудшения прочности материала. Этот ингредиент функционируют в долгосрочной перспективе, позволяя укреплять со временем монолит бетонной заливки.
  • Трехкальциевый силикат функционирует активно весь период существования цемента. Это вещество — основа смеси, именно оно запускает процесс, именуемый гидратацией. Когда он стартует, выделяется тепло, которое существенно повышает температуру смеси.
  • Трехкальциевый алюминат обеспечивает процесс схватывания, поскольку он наиболее активный компонент. Это вещество обеспечивает неуклонное нарастание прочности монолита в самые первые несколько дней после заливки. Потом ингредиент работу прекращает.
  • Четырехкальциевый алюмоферит, хотя и оказывает минимальное воздействие на твердение и набор прочности монолита, все равно чрезвычайно важен. Его работа стартует на финишном этапе, когда уже давно запущена процедура затвердевания цемента. Этот компонент улучшает достигнутые характеристики, тем самым завершая процесс.
Читайте также:  Выращиваем кизил на даче

Каждый перечисленный минеральный компонент определяет качество цемента, обеспечивает правильное течение процесса гидратации. Когда порошок смешивают с водой, внутри раствора немедленно появляются внутрикристаллические связи, которые определяют медленно нарастающую прочность, благодаря которой бетон в итоге приобретает состояние, схожее по параметрам с искусственным камнем.

Особенности гидратации

Из-за того, что период схватывания цемента быстротечен (45–90 минут), смесь требуется готовить незадолго до использования, оставляя время для выполнения заливки до финиша реакции, когда обрабатывать смесь уже невозможно либо бесполезно. Чтобы реакция гидратации полноценно произошла, пропорции объемов цемента с жидкостью должны соответствовать значению 3:2. Только четверть молекул воды химически связывают с порошком, остальные сохраняются в бетонных порах, имея связанный физически вид.

При уменьшении количества воды гидратация произойдет не полностью, в случае повышения ее объема — к развитию капиллярных пор внутри монолита, которые снизят его прочность. Инструкции к каждой конкретной марке цемента либо бетона всегда информируют о точных требуемых объемах составляющих.

Состав цемента и его гидратация

Как ранее уже было указано, на твердение портландцемента влияют четыре минеральных ингредиента, полученные при производстве этого связующего продукта. Поведение каждой составляющей значительно отличается и зависит о стадии схватывания монолита. Одни компоненты реагируют на появление воды немедленно, иные дожидаются своей очереди, а некоторые вообще вроде бы не участвуют в процессе.

Но все они при взаимодействии с водой начинают химическую реакцию, обеспечивающую нарастание, затем сцепление, а в итоге осаждение кристаллов насыщенных влагой соединений. Если рассматривать мероприятие с точки зрения химика, то оно является кристаллизацией.

Основные стадии затвердевания

Непосредственно процесс затвердевания монолита делится на два этапа. Сначала раствор схватывается, а затем твердеет. Первая стадия длится примерно сутки после приготовления смеси. На ее скорость влияет в основном только температура окружающего воздуха:

  • Когда термометр показывает около 20° тепла, бетон схватится примерно через пару часов после замешивания. Окончательное же схватывание гарантировано через 3 часа. То есть, этап схватывания длится примерно час.
  • Если температура воздуха 0°, такой процесс происходит дольше, может длиться даже 20 часов. Это связано с оттягиванием времени начала схватывания — процесс стартует только спустя 6–10 часов.

Рисунок 2. Бетон

Одновременно фактором влияния, определяющим скорость схватывания, становятся специфические добавки. Они способны ускорять или замедлять химическую реакцию.

Все время, пока длится этап схватывания, бетон сохраняет подвижность. Он подвержен любым механическим воздействиям. При осуществлении любых мероприятий относительно еще не успевшего схватиться монолита, нужно понимать, что они удлиняют срок его первоначального схватывания.

Финальный этап получения качественного монолита — твердение раствора. Оно происходит незамедлительно после завершения предыдущей фазы. Сам такой процесс чрезвычайно медленный, нередко он тянет несколько лет. В самые первые дни твердения монолит еще динамичен, отличается нелинейностью состояния.

Заключение

Гидратацию цемента нужно понимать, чтобы обеспечивать технологию выпуска качественного бетона. Приступая к созданию цементного раствора, требуется правильно составлять водо-цементную пропорцию, точно отмерять иные компоненты бетона, действовать строго по инструкции. Это гарантирует раствору создание идеальных условий, чтобы все реакции в нем проходили по правилам.

Физические процессы при гидратации цемента Текст научной статьи по специальности « Технологии материалов»

Аннотация научной статьи по технологиям материалов, автор научной работы — Лукутцова Н.П., Анисимов П.В.

Выполнены теоретические исследования физических процессов при гидратации цемента, главными из которых являются контракция , температура, пептизация (расклинивание), давление , раздвижка . Дано обоснование механизмов гидратации цемента первых трех периодов (стадий) из пяти возможных. Приведено обоснование механизма раздвижки ранее образованного гидратного слоя в конце индукционного периода. Даны рекомендации по возможному ускорению и углублению процессов гидратации . Результаты исследований позволяют уточнить отдельные положения теории гидратации цемента.

Похожие темы научных работ по технологиям материалов , автор научной работы — Лукутцова Н.П., Анисимов П.В.

Текст научной работы на тему «Физические процессы при гидратации цемента»

Лукутцова Н. П., д-р техн. наук, проф., Анисимов П. В., канд. техн. наук, доц. Брянская государственная инженерно-технологическая академия

ФИЗИЧЕСКИЕ ПРОЦЕССЫ ПРИ ГИДРАТАЦИИ ЦЕМЕНТА

Выполнены теоретические исследования физических процессов при гидратации цемента, главными из которых являются контракция, температура, пептизация (расклинивание), давление, раздвижка. Дано обоснование механизмов гидратации цемента первых трех периодов (стадий) из пяти возможных. Приведено обоснование механизма раздвижки ранее образованного гидратного слоя в конце индукционного периода. Даны рекомендации по возможному ускорению и углублению процессов гидратации. Результаты исследований позволяют уточнить отдельные положения теории гидратации цемента.

Ключевые слова: контракция, гидратация, вакуум, давление, раздвижка._

При взаимодействии цемента с водой происходят физико-химические процессы цементных минералов и воды. Эти процессы называют гидратацией цемента, которая включает сложнейшие химические реакции и физические явления. Наибольшее внимание в научной литературе отводится химии цемента, химическим процессам, а физические выступают как сопутствующие.

В настоящее время отсутствует четкий научно обоснованный механизм контракции цементного теста. В научной литературе при описании таких свойств цемента, как гидратация, делаются ссылки на контракцию, сопровождаемую образованием вакуума в цементном тесте. С величиной контракции связывают скорость гидратации цемента и его прочностные свойства. Вопросы контракции отражены в работах В.В. Некрасова, В.Н. Юнга, Б.Г. Скрамтаева и П.И. Панфиловой, В.С. Шестоперова, Ю.С. Ма-линина и других. Приведем некоторые особенности гидратации цемента, сопровождаемые контракцией, изложенные в литературных источниках [1].

1. Контракция – это процесс уменьшения абсолютного объема цементного теста при реакциях гидратации клинкерных минералов [2-4].

2. При гидратации цемента происходит послойное накопление гидратных продуктов на поверхности цементных зерен, которые приводят к механической раздвижке ранее образовавшегося гидрата и временному ослаблению структурных связей системы. Развивающийся в системе вакуум является «движущей силой» структурообразования цементной системы [4,5].

3. Разрушение первичной гидратной оболочки на зернах трехкальциевого силиката в конце индукционного периода может быть вызвано благодаря ее старению, фазовым превра-

щениям или вследствие нарастающего осмотического давления [6].

Несмотря на то, что в научной литературе явление контракции и связанный с ней вакуум в твердеющей цементной системе достаточно часто приводится с целью обоснования скорости и других процессов гидратации и твердения цемента, научно обоснованной связи этих явлений до настоящего времени нет. По нашему мнению, процесс образования вакуума в цементном тесте связан с порами цемента, трещинами, полостями и другими дефектами цементных зерен [7], объемы которых не заполнены составляющими газов воздуха или газовыми продуктами сгорания топлива. Следовательно, такие объемы относятся к вакуумным, а эффект вакуума проявляется в процессе гидратации цемента. Эта гипотеза авторами настоящей работы впервые была высказана и обоснована в работе [1].

В цементных зернах при охлаждении клинкера и последующего помола образуются замкнутые и открытые дефекты структуры цемента в виде пор, полостей, трещин, дырок [7]. Дефекты, которые только что образовались, представляют собой ничем не заполненные объемы (принимаем общее название – полости). Если дефект структуры цемента сообщается с окружающей средой, то полость будет заполнена содержимым среды – это газовые продукты сгорания топлива (при охлаждении клинкера) либо газы воздуха (при помоле клинкера). При первичном охлаждении расплава клинкера поры (полости) могут образоваться в результате защемления массой расплава газовых продуктов топлива. По мере охлаждения клинкера в соответствии с коэффициентом термического расширения плотность газа в полости уменьшается, и в ней возникает разрежение, т.е. создается дефицит давления. Разрывы в зернах клинкера и

образование полостей происходят и вследствие его гетерогенной структуры.

Скорость реакции гидратации, которая протекает циклически, оценивают по кривым тепловыделения. В работе [4] наблюдали два – четыре цикла ( периода), а в работе [8] – пять.

В настоящее время не прослеживается четкость механизмов гидратации цемента в первых трех стадиях: начальной, индукционного и ускоренного периодов [8]. Поэтому цель работы состоит в том, чтобы уточнить механизмы гидратации цемента и внести рекомендации по возможному повышению его активности. Метод исследований – теоретический, на основе анализа физических процессов современного состоя-

ния проблемы. Основные физические процессы, рассматриваемые в работе:

а) контракция, которая вызвана втягиванием воды в вакуумные полости цементных зерен; б) температура, колебание которой создает изменение объема вакуумных полостей; в) расклинивающее действие воды или продуктов гидратации на границе вакуумной тупиковой части трещины, размеры которой по высоте меньше диаметра молекулы воды или размера гидратированного минерала клинкера; г) давление внутри полостей, создающее разрывы цементных зерен по границам дефектов.

Цементное зерно представляет минерал клинкера с аморфизованным слоем на поверхности и дефектами структуры внутри (рис. 1а).

Рис. 1. Сечения зерен цемента: а – с отображением дефектов; б – с гелем в вакуумной полости. 1 – зерно цемента; 2 – аморфизованный слой; 3 – другие дефекты; 4 – вакуумная полость; 5 – микротрещина; 6 – зона расклинивающего действия молекул воды или геля; 7 – гель; 8 – устье полости (трещины).

По данным исследований Г. С. Ходакова [9] измельчение кварца вызывает пластическую деформацию кристаллической решетки с образованием аморфного кремнезема, удельная поверхность которого может достигать 50 – 60 м2/г и более. При помоле клинкера наблюдается аморфизация других силикатных материалов [10]. Мы полагаем, что при измельчении кристаллическая решетка минералов разрушается на поверхности зерен на отдельные частички, которые смещаются относительно друг друга и формируют новую «упаковку». Частицы малого размера образуют соответствующие им вакуумные поры за счет перераспределения вакуумных объемов в микротрещинах. Разрежение в порах с давлением до 0,1 МПа обеспечивает сцепление аморфизованных частичек цемента в плотной «упаковке». Частицы малых размеров заклинивают поверхностные дефекты на зернах цемента, которые при гидратации, по-видимому, представляют собой активные центры.

Эти поверхностные объемы (дефекты), как и закрытые поры, имеют разрежение вследствие понижения температуры от 120 до 20оС после помола клинкера. Освобождение устьев пор от аморфизованных частичек способствует втягиванию воды в вакуумные поры.

Таким образом, аморфизованный слой или отдельные участки на цементном зерне сформированы из мелких частичек, между которыми отсутствует химическая связь. Если устранить вакуумную силу, то произойдет их разъединение. Вакуумная сила устраняется молекулами воды, которые проникают между частичками, расклинивая их [11]. Этим объясняется начальный период гидратации ( пептизации) цементных зерен, которая по определению П. А. Ре-биндера и Е. Е Сегаловой называется адсорбционной [12].

Второй период индукционный, который не сопровождается заметным выделением тепла [8, рис.1]. При затворении цемента водой происходит адсорбционная пептизация аморфизованно-

го слоя [12], при этом устье полости освобождается для втягивания в нее воды. Кроме того, устье может быть расширено за счет гидратации в нем цементного клинкера и за счет повышения температуры. При заполнении внутреннего объема вакуумных полостей водой под давлением до 0,1 МПа происходят гидрационные процессы с образованием цементного геля.

Третий период – ускоренный. В полости возникают растягивающие напряжения, вызванные следующими механизмами (рис. 1б) [1]:

а) снятием напряжений сжатия поверхностей полости вакуумными силами после заполнения ее водой; б) созданием расклинивающего давления в тупиковых частях объема полости молекулами воды или продуктами гидратации цемента вакуумными силами; в) увеличением объема гидратированных минералов, превышающим объем полости; г) уменьшением объема полости, заполненной продуктами гидратации цемента и водой, при изменении температуры без возможности их вытеснения из полости.

Таким образом, при гидратации цемента происходит разделение зерен цемента на отдельные частицы по границам дефектов с увеличением поверхности. Механизмы такого разделения зерен цемента (4 позиции) приведены выше. Разделенные частицы цемента смещаются, разрывая продукт начальной реакции в виде гидратированного слоя. В местах деления цементного зерна освобождаются устья для всасывания воды к новым поверхностям и гидратации цемента.

При раздвижке частиц цемента происходит их смещение в свободные полости и образование новых вакуумных полостей, в которые втягивается вода. Теоретически объем новых полостей должен быть равен объему всасываемой воды при ее наличии вокруг зерна цемента. При неполном заполнении новых вакуумных объемов водой они могут быть заполнены продуктами гидратации, при этом интенсивность реакции будет ослаблена ( 4-й период) [8].

Результаты выполненных теоретических исследований уточняют некоторые положения теории гидратации цемента. Анализ физических процессов при гидратации цемента позволяет сделать следующее заключение: в начальный период гидратация протекает в поверхностном аморфизованном слое; в индукционный период вода заполняет вакуумные полости и вступает в реакцию с новыми поверхностями цемента; в ускоренный период в полостях возникает давление на стенки и разделение зерен на мелкие частицы по границам дефектов, их смещение и разрыв ранее образованной гидратной оболочки

в аморфизованном слое с образованием новых вакуумных пор (полостей), заполняемых водой.

Ускорить и усилить процесс глубинной гидратации цемента и повысить его активность за счет разделения зерен на более мелкие частицы можно кратковременным динамическим воздействием во второй или третий периоды гидратации, устанавливаемый интенсивностью контракции для данного вида цемента.

1. Лукутцова Н.П., О контракции цемента / Н.П. Лукутцова, П.В. Анисимов // Известия Орел ГТУ. Серия «Строительство. Транспорт», 2009. – № 1/21 (553). С. 78-85.

2. Шестоперов С.В. Долговечность бетона транспортных сооружений / С.В. Шестоперов. М.: Транспорт, 1966. 500с.

3. Рояк С.М. Специальные цементы / С.М. Рояк, Г.С. Рояк. М.: Стройиздат,1983. 279 с.

4. Малинин Ю.С. К вопросу о гидратации и твердении портландцемента / Ю.С. Малинин, Л.Я. Лопатникова, В.И.Гусева и др. // Труды междунар. конф. по проблемам ускорения твердения бетона при изготовлении сборных железобетонных конструкций – RILEM. М.: Стройиз-дат,1968. С. 82-90.

5. Пшеничный Г.Н. Гидратация клинкерного зерна – глубинный или поверхностный процесс? / Г.Н. Пшеничный // Технологии бетонов, 2008. № 10. С.50-52.

6.Тейлор Х. Химия цемента. М.: Мир,1996. 560 с.

7. Шестаков В.Л. Влияние режимов охлаждения и модифицирующих примесей на свойства затвердевшего клинкерного расплава [Текст]/ В.Л. Шестаков, В.З. Пироцкий // Шестой международный конгресс по химии цемента. Т. I. М.: Стройиздат, 1976. С.183-186.

8. Вовк А.И. Гидратация С38 и структура С-S-H- фазы: новые подходы, гипотезы и данные / А.И. Вовк // Цемент и его применение, 2012.- Май-июнь. -С.89-92.

9. Ходаков Г.С. Тонкое измельчение строительных материалов/ Г.С. Ходаков. М. : Строй-издат, 1972. -240 с.

10. Теория цемента/ Под ред. А.А.Пащенко. К.: Будивельник,1991. 168 с.

11. Теоретические основы инженерной геологии. Физико-химические основы [Текст] / Под ред. акад. Сергеева Е.М. М.: Недра, 1985.- 288 с.

12. Ребиндер П.А., Сегалова Е.Е. Новые проблемы коллоидной химии минеральных вяжущих материалов // Природа, 1952. № 12. С.45-51.

Оцените статью
Добавить комментарий