Сварка дюралюминия в домашних условиях

О способах

Соединение может осуществляться с использованием полуавтоматов. Аппарат для сварки дюралюминия работает в импульсном режиме. Таким образом, металл под воздействием импульсов разогревается, а после попадания капли в сварочной ванне происходит образование шва. Если вы решили остановиться на данном способе, вам следует знать, что постоянная минусовая полярность на электродах не даст шов. Нужна только плюсовая.

Второй способ заключается в применении электродов с вольфрамовым покрытием. Этот метод обеспечит качественным и аккуратным швом. Чтобы предотвратить образование оксидной пленки, используют аргон.

Также образование газовой защитной среды осуществляется с помощью ксенона, криптона и азота. Однако эти газы, в отличие от аргона, обойдутся вам дороже. Чтобы с вольфрамовыми электродами сварить за один проход изделия, толщина которых превышает 30 мм., нужно применить трехфазную дугу. Обычное подключение преимущественно используют для соединения поверхностей толщиной не более 3 мм.

Если у вас нет возможности выполнить электродуговую, используйте для дюралюминия холодную сварку. Вначале вам следует обзавестись специальным составом, а именно двухкомпонентным клеем. Он может представлять собой густую жидкость или мастику.

В нем есть эпоксидная смола и стальной порошок, который и делает формируемое соединение прочнее. Дополнительно для улучшения характеристик холодной сварки, а именно повышения адгезии между деталями и устойчивости к воздействию агрессивной среды, производители заправляют клеи специальными присадками. Данный метод многие еще называют пайкой. Дело в том, что соединить детали можно без электричества. Нужна только портативная газовая горелка и припой НТС-2000 в виде проволоки. Заделывать щели или соединять дюралюминиевые детали просто. Нужно разогреть деталь, чтобы начали плавиться припой со стержнем и начали затекать в щель.

Предварительно с поверхностей убирают оксидную пленку. В отличие от предыдущих способов, холодная сварка выполняется намного быстрее. Преимущественно посредством этих клеевых составов оперативно устраняют различные аварийные ситуации, когда соединить детали из алюминия или его сплавов нужно быстро. Судя по отзывам, к данному методу отдают предпочтение большинство домашних умельцев.

Также образование газовой защитной среды осуществляется с помощью ксенона, криптона и азота. Однако эти газы, в отличие от аргона, обойдутся вам дороже. Чтобы с вольфрамовыми электродами сварить за один проход изделия, толщина которых превышает 30 мм., нужно применить трехфазную дугу. Обычное подключение преимущественно используют для соединения поверхностей толщиной не более 3 мм.

Отрицательные моменты

Дюралюминий неустойчив к коррозии, после сваривания эта его особенность проявляется еще сильнее. Сам процесс сваривания требует высокой точности и внимания, малейшая ошибка может существенно повлиять на результат. Из-за высокой текучести сплава сложно сформировать качественный шов. При работах с дюралюминием обязательно использование защитных материалов.

Это может быть флюс – специальное вещество, наносимое на свариваемый участок с целью его защиты от воздействия окружающей среды. Также с этой функцией хорошо справляются инертные газы, например аргон. Защита сварочной зоны заметно повышает скорость и качество сварки.

Однако эти методы заметно повышают стоимость выполнения, что также является минусом. Для сварки дюралюминия необходимо наличие большого опыта и навыков, если вы ими не обладаете – экспериментировать не стоит.


Следующий шаг – подготовка свариваемых кромок. Если их толщина превышает 4 мм, необходимо сточить края под углом в 35о. Затем на место будущего шва надо равномерно нанести флюс, это поможет повысить качество шва. Свариваемые детали перед началом сварки рекомендуется прогреть.

Как варить алюминий инвертором без аргона

Сначала приобретаются специальные электроды по алюминию для электродуговой сварки. В этой статье, вы можете познакомится с плавящимися стержнями для соединения алюминиевых сплавов.

Сварка алюминия инвертором выполняется на постоянном токе обратной полярности (+ на электрододержателе). Для ходового электрода диаметром 3,2 мм, сварочный ток на аппарате выставляется в 80-100 А.

При соединении алюминиевых сплавов держак с электродом ставится под прямым углом (90 градусов). Технология выполняется короткой дугой.

Учтите : электроды по алюминию сгорают быстрее обычных в 3 раза, поддерживайте правильную скорость.

Толстый металл более 5 мм нуждается в разделке кромок. V-образная фаска вырезается со скосом 45-60 градусов.

Перед сваркой, заготовки для просушки нагревают газовой горелкой до 150-200 градусов. А электроды прокалывают в печи согласно инструкции завода-производителя.

Без подогрева алюминиевых изделий и просушки плавящихся стержней, соединение не получится.

В процессе нагрева заготовки, вы увидите, как вода выступит на поверхности и испарится.

Далее, изделия устанавливаются с технологическим зазором между ними 1-2,5 мм в зависимости от толщины пластин.

Металлической нержавеющей щеткой удаляется оксидная пленка (абразивные инструменты не рекомендуется применять, частицы абразива создадут дефекты соединения).

После приготовлений, выполняется сварка алюминия инвертором. После каждого прохода, при толстом металле, молотком удаляется шлак. Сварка по шлаку не производится. Электроды для алюминиевых сплавов при продолжении процесса нуждаются в очистке кончика.

Видео:

Алюминиевые сплавы подразделяются на трудно и легко свариваемые. Таблица поможет определится с характеристиками свариваемости.


Алюминиевые сплавы подразделяются на трудно и легко свариваемые. Таблица поможет определится с характеристиками свариваемости.

Сварка покрытыми электродами без защитных газов

Такой метод сварки позволяет производить работы там, где использование газов не рекомендуется или запрещено:

  • труднодоступные места;
  • на улице;
  • внутри резервуаров.

Электрод с внутренним стержнем, близким по составу к свариваемым металлам, покрывается хлористыми и фтористыми солями натрия и калия, криолитом. В процессе, при испарении, внешний слой электрода создает защитную среду.

Сварка покрытыми электродами не требует громоздкого оборудования, газовых баллонов и достаточно дешева.


Метод чаще называют пайкой, потому что в процессе не используется электричество, но соединение деталей из алюминия и его сплавов получаются достаточно крепкими. Необходимо иметь лишь портативную газовую горелку, желательно с большим объемом баллона и проволоку с припоем, например, HTC-2000.

Как варить алюминий электродом

Из алюминия произведено множество конструкций применяемых в устройстве автомобиля. Это могут быть блоки двигателя, коробки передач и элементы кузова. Изготавливают из этого нержавеющего материала различные емкости для промышленных и бытовых нужд. В случае образования трещины или свища заварить проблемное место лучше в среде аргона специальным аппаратом. Но если такой возможности нет, то можно воспользоваться инвертором. Сварка алюминия электродом в домашних условиях требует определенного режима и предварительной подготовки. Используются и специализированные расходные материалы. Как все это осуществить описывается ниже и демонстрируется на дополнительном видео.

Читайте также:  Оформление ванной 3 кв. м

Еще одной сложностью является оксидная пленка, покрывающая все изделие тонким слоем. Она защищает металл от разрушения в кислотной среде, но существенно мешает свариванию инвертором в домашних условиях. Трудность заключается в огромной разнице температур плавления. Алюминиевый материал плавится при 500 градусах, а его оксид при 2000 градусах. Чтобы устранить этот перепад необходимо зачистить место сварки железной щеткой, дающей доступ к основному металлу.

Сварка алюминия – как правильно варить алюминий в домашних условиях

Сварка алюминия затруднена многими факторами (в первую очередь его характеристиками), но специалисты постоянно работают над совершенствованием технологий, позволяющих надежно соединять детали, выполненные из данного металла и его сплавов. Сам алюминий и его сплавы отличаются поистине уникальными свойствами: небольшим удельным весом, высокой электро-, а также теплопроводностью, устойчивостью к механическим нагрузкам.

Процесс сварки алюминия

Сравнительная оценка типов сварки (нажмите, чтобы увеличить)

Аргонная технология

Аргонная сварка алюминия выполняется неплавящимся электродом в среде защитных газов. Для проведения сварочных работ применяется аппарат-инвертор, который способен генерировать постоянный электрический ток высокой мощности. Ведь ток в розетке является переменным, а инвертор для сварки алюминия выпрямляет его, делая постоянным. В качестве электрода рекомендуется применять вольфрамовые изделия, поскольку они хорошо выдерживают высокий нагрев и не деформируются при длительной эксплуатации. Вольфрам для сварки алюминия должен обладать толщиной не менее 1,5 мм, а оптимальные соотношения тока/толщины будут такими:

  • Алюминиевые детали, обладающие толщиной от 1 до 1,5 миллиметров, следует варить с помощью тока 30-40 ампер. Диаметр вольфрамового стержня должен быть 1,6-2 миллиметра.
  • Для более толстых запчастей, толщина которых составляет 1,5-2 миллиметра, следует применять более мощный ток (от 40 до 70 ампер). Толщина электрода — 2-2,5 миллиметра.
  • Если толщина детали составляет 2-3 миллиметра, то используется электрический ток силой 70-110 ампер. Толщина вольфрамового стержня — 2,5-3,2 миллиметра.

Для сваривания применяется специальная TIG-горелка, которая обеспечивает равномерную подачу инертного газа в активную зону. В качестве газа применяется чистый аргон либо аргон в смеси с гелием. Горелку следует вести ровно, а колебательные движения следует выполнять только при наличии очень широкого шва. Сварка алюминия аргоном осуществляется в один проход, а применение флюсов или плавящейся проволоки не требуется. Если шов получился неудачным, то процедуру можно повторить после остывания по стандартной схеме.


Для сваривания применяется специальная TIG-горелка, которая обеспечивает равномерную подачу инертного газа в активную зону. В качестве газа применяется чистый аргон либо аргон в смеси с гелием. Горелку следует вести ровно, а колебательные движения следует выполнять только при наличии очень широкого шва. Сварка алюминия аргоном осуществляется в один проход, а применение флюсов или плавящейся проволоки не требуется. Если шов получился неудачным, то процедуру можно повторить после остывания по стандартной схеме.

Недостатки

  • После сварки падает и без того невысокая коррозионная стойкость;
  • Сварка дюрали оказывается трудоемким процессом, который под силу осуществить только опытным сварщикам;
  • Формирование валика шва становится затруднительным из-за повышенной жидкотекучести;
  • Исходя из разнообразия разновидностей марок сплавов, порой могут возникнуть сложности с подбором электродов;
  • Сварка дюралюминия в домашних условиях становится очень затруднительным процессом;
  • Здесь обязательно применение флюса для облегчения проведения процесса;
  • Для высокого качества соединения приходится применять дорогостоящие виды сварки, такие как сварка дюралюминия аргоном.

Сварка дюралюминия полуавтоматом

Что нужно знать, чтобы сделать качественный шов?

Чтобы получать прочные и долговечные соединения, необходимо знать и учитывать следующие моменты:

  • изделия из алюминиевых сплавов всегда покрыты слоем тугоплавких оксидов;
  • перед началом сварки этот слой следует снять с помощью механической зачистки или протравливания;
  • оксидный слой быстро восстанавливается на воздухе, поэтому обработку нужно проводить непосредственно перед сваркой;
  • цвет алюминиевой заготовки при нагреве практически не меняется, следить за температурой визуально не удастся;
  • при нагреве снижается прочность изделия, это может привести к появлению микродефектов в ходе кристаллизации.

Учет этих особенностей позволяет избегнуть типовых ошибок, когда нужно заварить алюминиевые заготовки на дому.

Электроды серий ОЗ обладают отличными эксплуатационными качествами. Но проявляются эти качества только при низкой влажности материала обмазки. Поэтому до применения их обязательно нужно прокалить при температуре 120-140 о С в течение 40 минут. После прокаливания электроды нужно хранить в печи или в специальном герметичном футляре.

Подготовка металла к сварке

Вне зависимости от применяемого способа сварки, обязательно следует произвести подготовительные процедуры рабочей поверхности:
Присадочные материалы и кромки изделий нужно очистить от грязи, масла и жира.

Химическая обработка включает несколько процедур:

  • обезжиривание поверхности растворителем: уайт-спирит, ацетон, авиационный бензин или любой другой;
  • травление с помощью концентрированной щелочи, продолжительность – 2 минуты;
  • металл нужно промыть холодной водой;
  • пассивирование 30% раствором азотной кислоты в течение двух минут;
  • снова промывка водой;
  • сушка.

Если сваривание алюминия осуществляется не покрытыми электродами, то разделка кромок проводится при работе с изделиями толщиной более 4 мм. Применение расходников с обмазкой подразумевает разделку кромок при соединении деталей со стенками толщиной свыше 20 мм. Торцы тонких алюминиевых листов (не более 1,5 мм.) нужно отбортовать.

С помощью напильника, щетки с ворсинками из нержавейки/стали (на картинке) или наждачной бумаги зачищается свариваемая поверхность.


Химическая обработка включает несколько процедур:

Вес железобетонной сваи

Свая представляет собой железобетонную основу, которую используют для уплотнения грунта основания здания для укрепления фундамента. Изготовление свай трудоемкий процесс, требующий соблюдения технологических норм. Для производства свай применяют тяжелый бетон.

Читайте также:  Основные функции и характеристики дверных распашных петель

Забивные сваи, производят переход нагрузки от свайного основания дома на грунт. Железобетонные сваи обычно производят длиной до 12м, однако возможно увеличение длины при изготовлении. На сегодняшний день почти все без исключения строительные объекты, на которых строятся фундаменты, применяют железобетонные сваи, так как они позволяют сделать фундамент крепким. Забивные железобетонные сваи погружают в почву посредством забивки.

Железобетонные забивные сваи производятся согласно ГОСТу. Сваи обладают морозостойкостью, водонепроницаемостью. Маркировка свай представляет собой сочетание букв и чисел, в которых указывается:

  1. Тип сваи.
  2. Длина сваи.
  3. Размер сечения.
  4. Нагрузка.

Железобетонные сваи имеют разную нагрузку, в зависимости от того, куда они будут забиты. Чем выше нагрузка, указанная на свае, тем она крепче, долговечнее и выше по стоимости.

Железобетонные сваи сечения 300*300 мм, с ненапрягаемой арматурой изготовлены из бетона B20 класса прочности, F150 марки согласно морозостойкости, W6 марки по водонепроницаемости. Данные сваи изготовлены с целью использования в абсолютно всех климатических регионах, с целью устройства свайных оснований домой и строений. Способны выдерживать высокие нагрузки. Сколько весит свая 30*30 – является главным вопросом при покупке, так как сваи с данным сечением весьма популярны. Вес сваи 300*300 способен варьироваться от 6 до 12 тонн.

Железобетонные забивные сваи 400*400 мм изготовлены из бетона B25 класса прочности, F150 марки по морозостойкости, W6 марки по водонепроницаемости. Данные сваи изготовлены для построения свайных фундаментов домов и строений, могут применяться в любых климатических регионах

Основные характеристики забивных свай.

НаименованиеРазмеры, смОбъем, м 3Вес, кгЦена, руб.
ДлинаСечение
С30.30-330030*300,287002070
С40.30-340030*300,379402760
С50.30-350030*300,4611503450
С60.30-360030*300,5513804140
С70.30-370030*300,6416004830
С80.30-380030*300,7318305520
С90.30-390030*300,8220506210

Использование железобетонных свай существенно уменьшает трудоемкость строительства оснований и уменьшает цену строительных объектов. Кроме прочности закрепления свай на слабых почвах, значительно снижается размер земельных работ.


Свая представляет собой железобетонную основу, которую используют для уплотнения грунта основания здания для укрепления фундамента. Изготовление свай трудоемкий процесс, требующий соблюдения технологических норм. Для производства свай применяют тяжелый бетон.

Предельно допускаемая нагрузка на сваю

В ПК ЛИРА-САПР при расчете несущей способности свай (КЭ57 как для одиночных свай, так и для свайных кустов с учетом взаимовлияния) вычисляется их несущая способность Fd («предельное сопротивление» по терминологии изменения №1 к СП 24.13330.2011). Чтобы получить предельную нагрузку N по формуле 7.2 СП 24.13330.2011 «Свайные фундаменты» необходимо Fd из результатов расчета умножить на все коэффициенты.

γ = 1.15 (коэффициент условий работы для куста свай; в изменении №1 к СП 24.13330.2011 удалено)
γn = 1.15 (коэффициент надежности по назначению для сооружений II уровня ответственности)
γk = 1.4 (коэффициент надежности по грунту для определения Fd расчетом)

Предельная нагрузка по СП 24.13330.2011 (без изменений) на сваю будет равна:

Тогда при значениях на мозаике «относительной несущей способности (N/Fd)» меньше значения 0.71 свая несет данную нагрузку, а при значениях больше ― не несёт.

Предельная нагрузка в СП 24.13330.2011 (с учетом изменений №1-3) на сваю будет равна:

Тогда при значениях на мозаике «относительной несущей способности (N/Fd)» меньше значения 0.62 свая несет данную нагрузку, а при значениях больше ― не несёт.

Мозаика относительной несущей способности показывается по соответствующей кнопке в блоке «Инструменты» вкладки «Создание и редактирование». Показывается значение нагрузки на сваю (заданную в параметрах свайного куста или перенесённую из результатов расчета, см. в конце статьи https://rflira.ru/kb/4/127/) деленное на значение несущей способности (предельное сопротивление) Fd посчитанное в соответствии с заданными параметрами свайного куста.

Выдержка из СП 24.13330.2011, декабрь 2019

7.1.11* Допускаемую нагрузку на сваю (Fdc.g) в составе фундамента или одиночную сваю следует определять, исходя из условия:

где N — расчетная нагрузка, передаваемая на сваю от наиболее невыгодного сочетания нагрузок, действующих на фундамент, определяемая в соответствии с 7.1.12;

Fd — предельное сопротивление грунта основания одиночной сваи, называемая в дальнейшем несущей способностью сваи и определяемая в соответствии с подразделами 7.2 и 7.3;

γn — коэффициент надежности по ответственности сооружения, принимаемый по ГОСТ 27751, но не менее 1;

γc.g — коэффициент надежности по грунту, принимаемый равным:

1,2 — если несущая способность сваи определена по результатам полевых испытаний статической нагрузкой;

1,25 — если несущая способность сваи определена расчетом по результатам статического зондирования грунта или по результатам динамических испытаний сваи, выполненных с учетом упругих деформаций грунта, а также по результатам полевых испытаний грунтов эталонной сваей или сваей-зондом;

1,4 — если несущая способность сваи определена расчетом с использованием таблиц свода правил, в том числе по результатам динамических испытаний свай, выполненных без учета упругих деформаций грунта;

1,4 (1,25) — для фундаментов опор мостов при низком ростверке, на висячих сваях (сваях трения) и сваях-стойках, а при высоком ростверке — только при сваях-стойках, воспринимающих сжимающую нагрузку независимо от числа свай в фундаменте;

1,5 — если несущая способность сваи определена расчетом с использованием компьютерных программ на основании численного моделирования.

Для фундаментов опор мостов и для гидротехнических сооружений при высоком или низком ростверке, подошва которого опирается на грунты с модулем деформации Е

1 В скобках даны значения γc.g в случае, когда несущая способность сваи определена по результатам полевых испытаний статической нагрузкой или расчетом по результатам статического зондирования грунтов.

2 При расчете свай всех видов как на вдавливающие, так и на выдергивающие нагрузки продольное усилие, возникающее в свае от расчетной нагрузки N, следует определять с учетом собственного веса сваи, принимаемого с коэффициентом надежности по нагрузке, увеличивающим расчетное усилие.

Читайте также:  Приспособление для стяжки досок пола своими руками

3 Если расчет свайных фундаментов производится с учетом ветровых и крановых нагрузок, то воспринимаемую крайними сваями расчетную нагрузку допускается повышать на 20% (кроме фундаментов опор линий электропередачи).

4 Если сваи фундамента опоры моста в направлении действия внешних нагрузок образуют один или несколько рядов, то при учете (совместном или раздельном) нагрузок от торможения, давления ветра, льда и навала судов, воспринимаемых наиболее нагруженной сваей, расчетную нагрузку допускается повышать на 10% при четырех сваях в ряду и на 20% при восьми сваях и более. При промежуточном числе свай процент повышения расчетной нагрузки определяют интерполяцией.

5 При расчете сваи в составе большеразмерных кустов и полей свай на основании численного моделирования допускается учитывать возможность увеличения предельного сопротивления грунта основания сваи по сравнению с предельным сопротивлением грунта основания одиночной сваи.

С текстами СП и изменений к ним можно ознакомиться по ссылкам:

3 Если расчет свайных фундаментов производится с учетом ветровых и крановых нагрузок, то воспринимаемую крайними сваями расчетную нагрузку допускается повышать на 20% (кроме фундаментов опор линий электропередачи).

Область применения

Свайные фундаменты предоставляют уникальную возможность возведения объектов на грунтах со слабой несущей способностью или подверженным изменениям физических характеристик, к которым относятся торфяники, лёссы, водонасыщенные глины и суглинки, вечномёрзлые почвы.

Отдельно стоящие фундаменты под колонны опирают на “куст свай”, распределяя нагрузку на несколько опор.

Не рекомендуется использовать элементы кустарного производства, не имеющие заводских сертификатов качества.

Иногда длины стандартной сваи оказывается недостаточной, чтобы обеспечить надёжность фундамента. В таком случае используют составные сваи, стыкуемые по длине. Аналогично поступают, если свайное основание делается не висячим, а опертым на скальные породы или горизонт с высокой прочностью грунта.

Погруженная железобетонная свая выдерживает нагрузки свыше 6 тонн и обладает высокой грузоподъёмностью, благодаря площади контакта материала с грунтом и создания зоны местного уплотнения вокруг элемента при установке.


Изделия с большими габаритами применяются в индивидуальных проектах, связанных с особыми условиями строительства.

Технические характеристики железобетонных свай

Строительные элементы всегда своим размером должны соответствовать нормам и ГОСТ. Не являются исключением и размеры железобетонных свай. Регламентируются такие параметры, как:

  • длина;
  • площадь сечения;
  • соотношение сторон относительно друг друга;
  • длина армирующих элементов.

Вес свай железобетонных также должен соответствовать определенным нормам. Так как большинство специализированной строительной техники может перевозить и монтировать только конструкции определенной весовой категории, в которую должны попадать строительные сваи.

НаименованиеЦена за 1м/п при различном типе армированияРазмеры, ммМасса, тн
изделиянагрузка
368910111213ДлинаСечение
Сваи сечением 30х30
С 30.30*715730770810860По заявкеПо заявке3000300х3000,7
C 40.30*710730760800860По заявкеПо заявке4000300х3000,94
C 50.30*700720750790850По заявкеПо заявке5000300х3001,15
C 60.30*700720750790850По заявкеПо заявке6000300х3001,15
C 70.30*700720750790850По заявкеПо заявке7000300х3001,6
C 80.30*700720750790850По заявкеПо заявке8000300х3001,83
C 90.30*700720750790850По заявкеПо заявке9000300х3002,05
C 100.30*700720750790850По заявкеПо заявке10000300х3002,28
C 110.30*700720750790850По заявкеПо заявке11000300х3002,5
C 120.30*700720750790850По заявкеПо заявке12000300х3002,73
Сваи сечением 35х35
C 60.35По заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявке6000350х3501,9
C 70.35По заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявке7000350х3502,2
C 80.35По заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявке8000350х3502,5
C 90.35По заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявке9000350х3502,8
C 100.35По заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявке10000350х3503,1
C 110.35По заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявке11000350х3503,43
C 120.35По заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявке12000350х3503,73
C 130.35По заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявке13000350х3504,03
C 140.35По заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявке14000350х3504,33
C 150.35По заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявке15000350х3504,65
C 160.35По заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявкеПо заявке16000350х3504,95

Объём железобетонных свай также имеет большое значение. Так как чем он больше, тем большее усилие требуется приложить сваезабивной установке во время работы. Что, соответственно, сказывается на скорости строительства.
Технические характеристики железобетонных свай могут быть самыми разными. Они зависят от многих факторов – завода изготовителя, марки цемента, используемого для изготовления, и других нюансов.

  • длина;
  • площадь сечения;
  • соотношение сторон относительно друг друга;
  • длина армирующих элементов.

Номенклатура железобетонных свай

    с 9:00 до 18:00 (пн.-пт.)

Длина, сечение и вес свай рассчитываются еще на стадии проектирования объекта. Ниже приведены основные характеристики некоторых типов свай:

Добавить комментарий