Звукоизоляционные материалы – расчет оптимальных параметров для стен и потолка

Расчет звукоизоляции помещений

6.1.1. Сложение шума от нескольких источников

При
попадании в расчетную точку шума от
нескольких источников складывается их
интенсивность. Уровень интенсивности
при одновременной работе этих источников
определяют как

где
Li– уровень интенсивности (или звукового
давления)i-го источника;n– количество
источников.

Если
все источники шума имеют одинаковый
уровень интенсивности, то

Для
суммирования шума от двух источников
можно применить зависимость

где
– max(L1,L2) –
максимальное значение уровня интенсивности
из двух источников; ΔL– добавка, определяемая по таблице 4.2
в зависимости от модуля разности
интенсивностейL1иL2.

Определение
добавки ΔL

При
необходимости этот метод можно
распространить на любое количество
источников шума.

Рассмотренные
особенности суммирования уровней
позволяют сделать практический вывод
о том, что для снижения шума в помещении
необходимо сначала снижать шум от более
мощных источников.

Определение индекса изоляции воздушного шума между несущей плитой перекрытия

Индекс
изоляции воздушного шума ограждающими
конструкциями сплошного сечения с
поверхностной плотностью более 100 кг/м3
определяется
по формуле:

где
m
– поверхностная плотность,

K
коэффициент, учитывающий относительное
увеличение изгибной жесткости их бетонов
на легких заполнителях по отношению к
конструкциям из тяжелого бетона с той
же поверхностной плотностью, определяется
по таблице №10 СНиП 23-103 2003. Для сплошных
ограждающих конструкций плотностью
1800 кг/м
3
и более
K=1

Определяем
поверхностную плотность несущей плиты
перекрытия по формуле:

,
где
ρ – плотность ж/б плиты равная
,
h
– толщина плиты равная 140 мм

,
где
m1
– поверхностная плотность несущей
плиты перекрытия.

К=1,
т.к. ρ≥1800 кг/м3

Рассчитываем
индекс воздушного шума несущей плитой
перекрытия по формуле:

,
т.к
m1≥100
кг/м
2

Определяем
поверхностную плотность конструкции
пола выше звукоизоляционного слоя.

При
наличии звукоизоляционного слоя
определить поверхностную плотность m
конструкции пола выше звукоизоляционного
слоя как сумму поверхностных плотностей
элементов конструкции:

,
где
m2
– поверхностная плотность конструкции
пола выше звукоизоляционного слоя кг/м
2

Определяем
нагрузку на звукоизоляционный слой
перекрытия.

где
Р

– полезная нагрузка на пол варьируется
от 2000 до 3000 Па

g
– ускорение свободного падения,
принимаемое равным 10 м/с
2

Таблица
№16 СП 23-103 2003

Динамический
модуль упругости Eд,
Па, и относительное сжатие e
материала звукоизоляционного слоя
при нагрузке на звукоизоляционный
слой, Па

7.
Материалы из пенополиэтилена и
пенополипропилена:

Определяем
толщину звукоизоляционного слоя в
обжатом состоянии:

,где
d
=0,02– толщина звукоизоляционного слоя
в необжатом состоянии

Находим
частоту резонанса конструкции:

(принимаем
по среднегеометрическим значениям
частот
)

Определение
индекса изоляции воздушного шума

По
таблице находим индекс изоляции
воздушного шума (Rw)
данным междуэтажным перекрытием.

Таблица
№15 СП 23-103 2003

Индекс изоляции воздушного
шума перекрытием Rw,
дБ, при индексе изоляции несущей
плитой перекрытия Rw,
дБ

2. Покрытие пола на монолитной
стяжке или сборных плитах с т = 60
— 120 кг/м2 по звукоизоляционному
слою с Eд =
3×105 — 10×105
Па

Вывод:
помещение
находящееся под междуэтажным перекрытием
может быть использовано как помещения
общего пользования (коридоры, вестибюли,
холлы) т.к
нормативное значение индекса изоляции
воздушного шума
дляперекрытий
Rw(норм)
= 47 дБ
,
что удовлетворяетRw(норм)
Rw(расч)
(47≤54),
следовательно
перекрытие соответствует требованиям
СП 23-103 2003

Определение
индекса приведенного уровня ударного
шума под междуэтажным перекрытием с
полом на звукоизоляционном слое.

Индекс
приведенного ударного шума Lnw
под междуэтажным перекрытием с полом
на звукоизоляционном слое следует
определять по таблице № 17 СП 23-103 2003 в
зависимости от величины индекса
приведенного ударного шума для несущей
плиты перекрытия Lnw,
определенного по таблице № 18 СП 23-103
2003, и частоты собственных колебаний
пола, лежащего на звукоизоляционном
слое, f,
определяемой по формуле:

Где
Ед
– динамический модуль упругости
звукоизоляционного слоя, Па

ε
– относительное сжатие материала
звукоизоляционного слоя при нагрузке
на звукоизоляционный слой, Па

По
таблице № 16 СП 23-103 2003 находим:

По
таблице № 18 СП 23-103 2003 находим:

При
подвесном потолке из листовых материалов
(ГКЛ, ГВЛ и т.п) из значений
Lnwвычитается
1 дБ

При
заполнении пространства над подвесным
потолком звукопоглощающим материалом
из значений
Lnw
вычитается 2 дБ

Вычисляем
частоту колебаний пола по формуле при
Eд=8,5*105
Па,
ε=0,2, толщине в обжатом состоянии

(принимаем
по среднегеометрическим значениям
частот
)

По
таблице № 17 СП 23-103 2003 находим индекс
приведенного уровня ударного шума Lnw
= 58 дБ

Выводпомещение
находящиеся под междуэтажным перекрытием
может быть использовано как помещение
музыкальных классов средних учебных
заведений т.к нормативное значение
индекса приведенного уровня ударного
шума дляперекрытийLnw(норм)
=
58
дБ, что удовлетворяетLnw(норм)
Lnw(расч)
(58≥58),
следовательно
перекрытие соответствует требованиям
СП 23-103 2003

Проведение ШВИ от А до Я

Как использовать формулу для расчета звукоизоляции

Проведение ШВИ или вернее сказать, защита от внешнего/внутреннего шума изначально предусмотрена конструкцией большинства авто. Только стандартная ШВИ недостаточно эффективна в большинстве случаев. В результате этого возникают следующие неприятные моменты.

  • Значительно снижается уровень комфорта в салоне авто, что особенно актуально во время длительных поездок.
  • Появляется быстрая утомляемость водителя транспортного средства, что становится причиной невнимательности и допуска ошибок.
  • В итоге начинают возникать различные экстремальные ситуации на дороге, включая мелкие и даже крупные ДТП в результате снижения внимательности, и как следствие, безопасности движения.

Шумы, как известно, отрицательно воздействующие на водителя и пассажиров, создаются от:

  • Функционирующей силовой установки;
  • Рабочих компонентов трансмиссии;
  • Покрышек;
  • Системы выхлопа;
  • Кузова и его деталей.

Формулы расчета звукоизоляции

На сегодняшний день известны многочисленные технологии и материалы, способные эффективно нейтрализовать шум, и снизить вибрации. Они чаще всего применяются в автосервисах. Есть также инструкции, позволяющие провести ШВИ своими силами. Изначально надо суметь осуществить грамотный выбор надлежащих материалов для проведения ШВИ.

А в частности, следует знать, что материалы отличаются по следующим характеристикам:

  • Поглощение. Принято отличать материалы ШВИ, которые поглощают шум и звуковые волны. Одним из эффективнейших материалов данного типа принято считать акустический войлок, подбитый битумным слоем. С другой стороны, такой материал уже давно считается устаревшим после выхода современных пористых материалов со схожими характеристиками.
  • Изоляторы. Данные материалы способны отражать звуковые волны. В большинстве своем применяются для изоляции двигательного отсека или капота, а также используются в качестве второго слоя в салоне авто.

  • Виброизоляторы. Это материалы, которые эффективно уменьшают частоту вибраций салонных панелей из металлического или пластикового материала. К таким ШВИ принято относить Бимаст, Визомат и др.
  • Уплотнители. Материалы, легко устраняющие скрипы и постукивания облицовочных панелей, а также других салонных элементов. Лучшими уплотнителями считаются Маделин, Битопласт и др.

Для наилучшего эффекта, материалы принято комбинировать.

Как и говорилось выше, для расчета нужного количества материалов, требуется провести определенные замеры:

  • С помощью линейки измерить кузовной элемент.
  • Затем путем несложных вычислений определить площадь.
  • Ввести данные в калькулятор или примерно вычислить, сколько материала понадобится.

Ниже в таблице приведено примерное количество определенных материалов, используемых для ШВИ различных зон автокузова.

МатериалыКапотКрышаДверьПол
Бимаст2 листа1 лист5 листов
Визомат2 листа2 листа
Вибропласт0,3 листа1 лист
Акцент1 лист0,25 листа2 листа
Сплен0,75 листа
Битопласт0,5 листа

С материалами определились. Теперь нужно хорошенько подготовить все поверхности, которые придется обработать.

  • В первую очередь рекомендуется демонтировать обивку кузовных деталей – капота, крыши, багажного отсека и других элементов, намеченных под обработку. Рекомендуется тщательно следить за коррозийными пятнами на металлических поверхностях деталях. Если они имеются, то надо зачистить все, обработать их преобразователями ржавчины, загрунтовать и покрыть краской.
  • Во-вторых, если стандартная ШВИ потеряла свою силу, то есть эластичность, все листы надо демонтировать. Чтобы удалить остатки битум основы, рекомендуется применить уайт спирит.
  • Далее надо будет удалить все загрязнения, хорошенько обезжирить кузовные элементы растворителем. Поверхности должны быть идеально чистыми, дабы материалы ШВИ прилегали к кузовным деталям максимально плотно.

ШВИ в упаковках

ШВИ материалы, такие как Бимаст или Вибропласт, редко клеятся целыми и большими кусками. Их наносят полосками и кусками, вырезаемыми своими руками. Это позволяет сэкономить материал, провести ШВИ грамотно и практично.

Вот, как проводится раскрой:

  • Вначале размечаются прямоугольники на материале (на некоторых моделях имеются формованные квадратики площадью 1 см2) и вырезаются по линиям.
  • Обязательно учитывается размер дренажных отверстий.

Напротив, такие материалы, как Акцент, Сплен или Изотон клеятся большими кусками

Это важно учитывать при раскрое своими руками

Четыре решения для шумоизоляции стен

Через стены с шумоизоляцией не слышно шумных вечеринок. Звукоизоляционные решения для стен снижают от 60 до 80% шума. Обычно шумоизоляционные материалы устанавливают только на межквартирные стены, потому что через них проникает большая часть шума.

Для стен между квартирами и фасадных стен есть три решения: «Минеральная вата + каркас из ГКЛ», «ЗИПС III Ультра» и «Тихий дом». Для шумоизоляции межкомнатных стен толщиной до 10 см подходят плиты Knauf «Акуборд».

В этой статье расскажем, чем отличаются шумоизоляционные решения для стен и на что обратить внимание при выборе и монтаже материала.

Какая бывает шумоизоляция стен?

Все решения для стен снижают шум благодаря сочетанию плотных и рыхлых материалов. Проекты отличаются по сложности монтажа, толщине и эффективности. Самое эффективное решение — «ЗИПС III Ультра». Оно снижает уровень шума до 80%. Самое тонкое для межквартирных стен — «Тихий дом». Его толщина — 4,5 см.

Проекты для стен делятся на каркасные и бескаркасные. В последних звукоизоляционный материал крепится прямо к стене. В каркасных решениях сначала строят каркас. Потом его заполняют звукопоглощающим материалом, например, минеральной ватой, и закрывают звукоизоляционным слоем — плитами из гипсокартона или гипсоволокна.

По сравнению с монтажом решений для пола и потолка, крепить шумоизоляцию на стены проще. Решения «Тихий дом» и «ЗИПС III Ультра» сделаны специально для самостоятельной сборки.

Решение для шумоизоляции стен выбирают в начале ремонта, потому что это один из первых этапов отделочных работ.

Решения для шумоизоляции стен

Проект «ЗИПС III Ультра»

Эффективность 3*
Толщина 2*
Монтаж 3*

Материалы для проекта

Как работает

«ЗИПС III Ультра» — самое эффективное решение в соотношении толщина/результат. Оно снижает шум до 80% благодаря сочетанию плотного гипсоволокна и рыхлого стекловолокна. Гибкие опоры-виброизоляторы, которыми панель соприкасается со стеной, увеличивают звукоизоляцию.

Как крепится

Панель крепится напрямую к стенам из бетона, блоков и кирпича. В этом решении не нужен металлический каркас, поэтому монтировать его проще.

В комплект каждой плиты входят необходимые крепежные материалы: саморезы, дюбели, анкеры и шайбы. Дополнительно для монтажа понадобятся демпферная лента «Вибростек-М100», герметик «Вибросил», гипсокартон и крепеж для него. Для резки плит нужен электрический лобзик и острый нож, для крепежа — молоток и дрель.

Перед началом монтажа стену выравнивают штукатуркой. Если стена неровная, установить плиты не получится.

На примыкающие стены, пол и потолок приклеивают демпферную ленту. Она предотвращает передачу звука от стен к звукоизоляционной конструкции. Лента крепится к стене герметиком «Вибросил». Он сохраняет гибкость, поэтому предотвращает передачу вибраций между примыкающими конструкциям. Если из потолка выходят трубы, то они тоже обматываются лентой, чтобы снизить передачу шума. Если обойтись без ленты и герметика, то эффект от звукоизоляции снизится на 50%.

Плиты «Зипс III Ультра» монтируют к потолку через восемь выступающих опор. Это удобно и снижает риск ошибки, потому что места крепления уже обозначены. Лишние сквозные отверстия в плите нарушают ее герметичность, то есть снижают звукоизоляцию.

Сверху плиты закрывают финишным слоем гипсокартона толщиной чуть больше одного сантиметра. Гипсокартон крепится с помощью саморезов. Швы между листами гипсокартона заполняют герметиком «Вибросил», и стена готова к отделке.

Преимущества решения «ЗИПС III Ультра»
Самая эффективная звукоизоляция – снижает до 80% шума. Не нужен металлический каркас. Просто смонтировать самостоятельно. Крепеж идет в комплекте

Проект «Минеральная вата + каркас из ГКЛ»

Эффективность 2*
Толщина 1*
Монтаж 1*

Материалы для проекта

Как работает

«Минеральная вата + каркас из ГКЛ» — эффективное и бюджетное каркасное решение. Оно снижает шум на 60% благодаря звукоизоляционной вате, герметику, демпферной ленте и виброподвесам.

Читайте также:  Деревянные стремянки (24 фото): особенности стремянок из дерева. Как выбрать маленькую модель с деревянными ступенями?

Минеральная вата не горит и не покрывается плесенью от влаги. Волокна этого материала — тонкие, длинные и расположены в хаотичном порядке, поэтому они изолируют ударный и воздушный шум.

Как и в проекте «ЗИПС III Ультра», герметик и лента отделяют звукоизоляционную конструкцию от пола, потолка и соседних стен. Виброподвес нужен для крепления каркаса к потолку. Благодаря комбинации упругих материалов Sylodyn и Sylomer он снижает шум на 25% по сравнению со стандартными прямыми подвесами. Виброакустические свойства этого подвеса сохраняются до 30 лет.

Материалы для этого проекта, включая крепеж, продаются по отдельности.

Как крепится

Проект «Минеральная вата + каркас из ГКЛ» дешевле чем «ЗИПС III Ультра», но для монтажа нужны навыки в установке каркасных конструкций или строительная бригада.

Первый этап работ — изоляция потолка, пола и соседних стен демпферной лентой. Потом к стене крепят виброподвесы, на которые устанавливают профиль. Пустое пространство между стеной и профилем заполняют минеральными плитами. При работе с этим материалом обязательно используют защитный комбинезон, перчатки и очки.

Конструкцию из каркаса и плит закрывают двумя слоями гипсокартона толщиной чуть больше одного см. Финальный шаг — обработка швов между листами гипсокартона герметиком «Вибросил».

Толщина смонтированной звукоизоляционной конструкции — 7,5 см. Она «съедает» больше всего пространства по сравнению с другими решениями, поэтому может не подойти для небольших помещений.

Преимущества решения «Минеральная вата + каркас из ГКЛ»
Снижает до 70% шума. Стоит почти в три раза дешевле «Зипс III Ультра».

Проект «Тихий дом»

Эффективность 1*
Толщина 3*
Монтаж 2*

Материалы для проекта

Как работает

Плиты «Тихий дом» сделаны из плотного гипсокартона и рыхлой минеральной ваты. Сочетание этих материалов снижает шум. Армированный сверхпрочный гипсокартон выдерживает большие нагрузки — на него можно вешать телевизор.

Как крепится

«Тихий дом» — самое удобное решение для самостоятельного монтажа. В наборе для установки есть все необходимые комплектующие:

  • направляющие профили,
  • потолочные профили,
  • подвесы,
  • соединители профилей (крабы),
  • удлинители вертикальных профилей,
  • герметик,
  • уплотнительная лента,
  • дюбель-гвозди,
  • саморезы,
  • шурупы,
  • подробная инструкция по монтажу.

Каждый набор рассчитан на установку плит на стены площадью от 5.4 м² до 10.8 м²:

  • Набор для установки Тихий дом №4, 5.4 м²
  • Набор для установки Тихий дом №6, 8.1 м²
  • Набор для установки Тихий дом №8, 10.8 м²

Для звукоизоляции стены площадью 11м² понадобятся два набора: один набор №4 (5.4 м²) и один набор №6 (8.1 м²). Для звукоизоляции площади 20м² — два набора №8 (10.8 м² x 2 = 21.6м² ). Каждый набор упакован в отдельную коробку. Плиты и наборы можно увезти в легковой машине, поэтому можно сэкономить на доставке.

Проект «Тихий дом» — каркасное решение. Плиты крепят не на стену, как в проекте «ЗИПС III Ультра», а на металлический каркас. Его строят так: сначала по периметру стены устанавливают направляющие, потом к стене крепятся подвесы, и уже к подвесам присоединяют профили. Когда каркас готов, на нем фиксируют панели, и стена готова к финишной отделке.

Преимущества решения «Тихий дом»
Снижает до 60% шума. Не «съедает» много места. Просто и быстро монтируется. В наборах есть все комплектующие – ничего не надо докупать.

Проект Knauf «Акуборд»

Эффективность 2*
Толщина 3*
Монтаж 3*

Материалы для проекта

  • Гипсовая шпаклевка
  • Армирующая лента
  • Саморезы
  • Дюбели

Как работает

Плиты Knauf «Акуборд» сделаны из Knauf-листа и многослойного стеклохолста. Их толщина всего 2 см, но они эффективно снижают шум — до 60%. Это решение используют только для звукоизоляции легких межкомнатных перегородок толщиной до 10 см.

Как крепится

Knauf «Акуборд» можно крепить только на стены из гипсовых блоков и газопенобетона толщиной меньше 10см. С другими материалами это решение использовать нельзя.

Монтировать этот проект очень просто. Плиты крепятся саморезами прямо к стене. Не нужен ни каркас, ни герметик, ни демпферная лента. Швы между листами заполняют гипсовой шпаклевкой с армирующей лентой. Для крепления полок и шкафов используют дюбели длиной от 6 см.

Какие 5 вопросов задать перед выбором шумоизоляции для стен:

  1. Насколько эта звукоизоляционная конструкция уменьшит шум в квартире?
  2. Сколько площади «съест» конструкция?
  3. Сколько стоят звукоизоляционные материалы, крепеж и их доставка?
  4. Как подготовить поверхность перед монтажом?
  5. Какие навыки и опыт нужны для монтажа?

Графеновые батареи и магний-графеновый аккумулятор

Даже человек, слабо связанный с техникой, знает, что любая автономная система, в работе которой задействовано электричество, не может обойтись без независимых источников электроэнергии. Будь это средства мобильной связи или транспортные средства — все они должны быть оснащены батареями или аккумуляторами, недостаток которых — небольшая ёмкость и короткий срок эксплуатации. С появлением графеновых батарей этот недостаток будет устранён.

  • История открытия
  • Структура графена
  • Устройство батарей и аккумуляторов
  • Преимущества и проблемы
  • Другие разработки

История открытия

Поиски новых материалов для аккумуляции электрической энергии учёные вели давно. Применяемые до сих пор составляющие батарей и аккумуляторов уже не отвечали современным требованиям к электротехнике. Особенно это относилось к батареям и аккумуляторам, чьи невысокие технические характеристики тормозили развитие новых экономичных и экологически чистых транспортных средств.

Исследования увенчались успехом в 2004 году, когда двое британских учёных, выходцев из России, Константин Новосёлов и Андрей Гейм, получили в лаборатории новый материал с нужными свойствами на основе углерода — графен. За создание углеродной плёнки толщиной в один атом на подложке из оксида кремния с высокими аккумулирующими характеристиками учёные получили в 2010 году Нобелевскую премию.

Эта разработка считается самой перспективной в области технологий аккумулирования электроэнергии, хотя технически ещё и не получила массового применения.

Структура графена

Графен является разновидностью графита — вещества, состоящего из атомов углерода. Кристалл графита состоит из слоёв, которые напоминают сложенные стопкой листы бумаги. Атомное взаимодействие между слоями слабее, чем в их середине, поэтому графит так хорошо подходит в качестве стержня для карандашей.

Это свойство и позволило расщепить его на отдельные слои и получить новое вещество под названием «графен», обладающее теми же свойствами, что и графит, но в несколько раз усиленными. Такой результат является прорывом для развития электроники, а также производства батарей и аккумуляторов, ведь природный графит обладает великолепной тепло- и электропроводностью. Это позволит заменить графеном дорогостоящие материалы, использующиеся сейчас в производстве, ведь графит имеется в природе в изобилии.

Графен имеет предельно простую кристаллическую структуру, уменьшающую сопротивление потоку электронов, поэтому может накапливать заряд намного быстрее, чем объёмные кристаллы. И заряд этот намного мощнее. Эти свойства позволят создавать из него батареи и аккумуляторы, имеющие намного лучшие технические характеристики, чем у используемых сейчас.

Устройство батарей и аккумуляторов

Принцип действия и устройство графеновых аккумуляторов те же, что и обычных аккумуляторных батарей, установленных на автомобилях с двигателями внутреннего сгорания. Отличие в электрохимических процессах, происходящих внутри устройства. Больше всего они сходны с реакцией, идущей в литий-полимерной аккумуляторной батарее.

Сейчас существуют два конкурирующих технологических направления по производству графеновых аккумуляторов. Разработаны они в США и России:

  • в американской модели источники химической реакции состоят из кобальтата лития, а также катода из перемежающихся кремниевых и графеновых пластин;
  • во втором — российском — варианте был создан магний-графеновый аккумулятор, в котором используемая как анод литиевая соль была заменена оксидом магния, который дешевле и менее токсичен.

В обоих случаях происходит увеличение скорости прохождения ионов между электродами и ёмкости аккумуляторов, потому что графен имеет высокую электропроницаемость и склонность к накапливанию электрического заряда. Отличаются лишь оценки возможной ёмкости. Американские специалисты считают, что она увеличится по сравнению с литий-ионными аккумуляторами в десять раз, а русские — до двух с половиной раз.

Преимущества и проблемы

Аккумуляторам с используемым в них плоским кристаллом графита сулят большие перспективы. Они отличаются:

  • меньшим весом;
  • высокой проводимостью;
  • большой прочностью и водонепроницаемостью;
  • экологической чистотой;
  • повышенной удельной ёмкостью;
  • возможностью регулировки своих качеств благодаря комбинированию с другими материалами;
  • лёгкой устранимостью повреждений;
  • невысокой ценой на сырьё.

Главная проблема графеновых аккумуляторов на сегодняшний день — их размер. Они получаются слишком большими для установки в мобильные устройства. Пока эта проблема не решена.

В отличие от гаджетов, в автомобилестроении графен имеет прекрасные перспективы уже сейчас. Установка аккумуляторов из графена на электромобиль увеличивает его пробег между двумя зарядками в три раза, до 1000 км. Зарядка длится самое большее 10 минут. Оснащение для этого АЗС заправочными станциями проблемой не является.

Другие разработки

Работы по усовершенствованию графеновых аккумуляторов кроме России и США активно ведутся и в других странах.

Учёным Австралии удалось открыть способ удержания графеновых пластин в стабильном состоянии. Ведь их неустойчивость, стремление вернуться в трёхмерное состояние, свойственное обычному графиту, была одной из основных проблем этого материала. Чтобы предотвращать это, учёные поместили пластины графена в водяной гель, что предотвращает их слипание. Кроме того, аккумулятор такой конструкции можно будет заряжать за считанные секунды. Стоимость геля невысока, ведь он состоит всего лишь из воды и углерода.

Практически каждый год в мире появляются новые технологии, которые позволяют более рационально использовать истощающиеся естественные ресурсы. К ним относится и изобретение графена, который в недалёком будущем, возможно, вызовет революционные изменения в транспортной системе благодаря своим уникальным свойствам в большом объёме аккумулировать и сохранять электрическую энергию. Вполне вероятно, каждый желающий сможет с помощью 3 D -принтера сделать графеновый аккумулятор своими руками.

Графеновые аккумуляторы — что это, характеристики

Ритм современной жизни становится все стремительнее – мы стараемся сделать больше дел за короткое время. Мобильные устройства помогают нам увеличить “скоростные нормы”, но и они иногда подводят – ресурс автономной работы ограничен ёмкостью аккумуляторов и временем их заряда.

Производители мобильных устройств мечтают о «вечной батарейке», а ученые стараются мечту сделать реальностью.

Графеновые аккумуляторы – описание, история создания

Технологическим прорывом на пути создания сверхъемких аккумуляторных батарей стало открытие графена.

Графен – это углеродная пленка, образованная жестким соединением атомов углерода в гексагональную структуру, напоминающую пчелиные соты. Получен уникальный материал из графита методом расщепления. Толщина листа графена всего один атом – это первый в истории двумерный кристалл, который представляет собой почти идеальный проводник.

Ученые за открытие графена получили Нобелевскую премию, потому что материал нового поколения уникален и обладает, помимо тонкости, другими замечательными свойствами:

  • высокой электропроводностью;
  • гибкостью;
  • теплопроводностью;
  • огромной механической прочностью;
  • прозрачностью;
  • непроницаемостью для большинства газов и жидкостей.

В последние годы для исследований технологий на основе графена выделяются большие средства – область его применения обширна: в отраслях высоких технологий, в электротехнической области промышленности, в космических и военных отраслях, в медицине, в автомобилестроении и сфере экологии.

Идеален графен для производства аккумулятора – максимальное отношение поверхности графенового листа к объему позволяет компоновать материал в плоский проводник, который накапливает большой заряд практически мгновенно.

Справка: Аккумуляторные батареи – это химические источники тока, способные многократно накапливать и отдавать заряд.

Состав батареи

Графеновый аккумулятор что это и как он устроен рассмотрим подробно.

Устройство представляет собой специальный металлополимерный корпус, в который вставлены две пластины из разнородных металлов (медь и алюминий) с выводами для обеспечения электрических контактов – между электродами помещен электролит (жидкий или твердый). Анод содержит восстановитель, катод – окислитель. Внутри корпуса стоит разделительная пластина – сепаратор, который не дает отрицательно заряженным атомам лития свободно перемещаться между электродами.

Устройство графеновых аккумуляторов сходно с литий-полимерными, только в графеновых батареях электролитом и сепаратором служит графен.

Принцип работы

Схема работы графен-полимерных аккумуляторов не отличается от литий-ионных. Принцип одинаков – при заряде и разряде ионы лития постоянно перемещаются между анодом и катодом через электролит, в то время как электронам приходится достигать анода или катода по внешней цепи, создавая в ней электрический ток.

Читайте также:  Деревянные рейки в интерьере: потолочная, круглая, фигурная, декоративная, резная, тонкая

Происходит это так:

  1. При разряде на аноде происходит окислительная химическая реакция, которая приводит к появлению свободных электронов. Они стремятся попасть на катод, где их концентрация мала, однако на пути свободных электронов возникает сепаратор, поэтому для них остается единственный путь – цепь нагрузки, куда замкнута батарея. Направленное движение электронов питает присоединенное к батарее устройство энергией.
  2. Положительно заряженные ионы лития также направляются к катоду, но уже через сепаратор, который свободно пропускает положительно заряженные частицы.
  3. После перемещения всех электронов к катоду наступает фаза разряда аккумулятора.
  4. Подав на электроды напряжение определенной величины, можно запустить процесс перемещения ионов в обратном порядке – электроны опять соберутся на аноде и будут оставаться там до очередного подключения нагрузки.

Преимущества над литиевыми

Несмотря на сходство конструкции и принцип действия, графитовые аккумуляторы превосходят литиевые по своим характеристикам – графен быстрее накапливает заряд за счет высокой электропроводности.

Технические возможности

Аккумулятор нового поколения на основе графена обладает уникальными свойствами – применение таких источников энергии станет прорывом в создании электромобилей и производстве смартфонов.

Скорость зарядки

Испанские разработчики представили прототип аккумулятора на основе графена – время полного заряда такой батареи в десятки раз меньше, чем аналогичных литий-полимерных батарей, а в режиме быстрой зарядки составляет всего пять минут.

Huawei в одной из своих моделей использовала технологию быстрой зарядки – благодаря вкраплениям графена 45 процентов заряда накапливалось за пять минут.

Накопительные свойства графеновых батарей

Графен на счет своего строения способен в большом количестве накапливать электрические заряды на своей поверхности, что позволяет значительно увеличить емкость графеновых батарей.

Компания «Graphenano» запустила в производство аккумуляторы «Grabat» с емкостью позволяющей электромобилю проехать более тысячи километров без подзарядки.

Внимание! Немецкие концерны начали тестирование АКБ «Grabat» на собственных автомобилях – эра бензиновых двигателей заканчивается.

Сфера применения

Высокие емкость и скорость заряда/разряда графеновых батарей, а также низкая стоимость их производства станет новой вехой в производстве электромобилей.

До сих пор производительность мобильных устройств и телефонов существенно ограничивалась временем автономной работы – с графеновыми источниками энергии стоит ожидать появления гаджетов с невероятными возможностями. Корпорация Samsung решает проблему внедрения графена в накопители энергии для телефонов с помощью графеновых шариков.

Важно! Пока не созданы достаточно маленькие батареи из графена для электронных девайсов – графеновые технологии используются только при производстве внешних аккумуляторов, способных заряжать смартфон вместо полутора часов за 10-12 минут.

Преимущества графеновых батарей

Повсеместное внедрение источников энергии на основе графена только вопрос времени, ведь его преимущества перед другими видами аккумуляторов очевидны.

Небольшой вес

Графен очень легкий – два квадратных метра весят всего полтора грамма. Поэтому графеновые АКБ весят значительно меньше, чем аналогичные литий-ионные батареи.

Высокая проводимость

Простая кристаллическая структура кристалла графена не создает препятствий движению электронов – его электропроводность выше, чем у полупроводников. Это свойство графена дает возможность графеновым батареям заряжаться быстрее остальных АКБ.

Прочность

Прочность графена близка к прочности алмаза, поэтому разработчики уверены, что батареи на его основе будут более устойчивы к разрушениям.

Водонепроницаемость

Для стабильного состояния аккумуляторов разработана технология превращения графеновых пластин в водянистый гель – гелевый раствор уменьшает время зарядки батареи до нескольких секунд.

Высокая удельная емкость

Электрод, изготовленный из графена, позволяет ионам лития не только скапливаться на поверхности, но и проникать внутрь материала, что увеличивает количество заряженных частиц в аккумуляторе, значительно увеличивая его емкость.

Невысокая стоимость

Графит широко распространен на земле, а производство графена недорого – батареи из этого материала стоят дешевле литий-ионных.

Замена дорогого и редкого лития на магний по технологии, используемой в России, значительно удешевит производство.

Проблемы новой технологии

Плюсы новой технологии очевидны, но производство графеновых АКБ имеет и свои недостатки.

Неподходящая плотность материала

Графен имеет низкую плотность, что ограничивает создание компактных источников энергии.

Большие размеры аккумуляторов

Большой размер батарей не позволяет устанавливать их в мобильные устройства.

Внимание! Можно сделать магний-графеновый аккумулятор своими руками, однако процесс создание графена в домашних условиях сложен:

  • в металлической емкости в течение двух суток миксером, который работает от асинхронного двигателя, взбивают графитовый порошок и жидкость для мытья посуды;
  • пену высушивают, полученную пыль растворяют в лаке для обработки алюминия;
  • состав наносят на подложку из алюминия – получившийся материал и есть графен.

Перспектива использования графеновых аккумуляторов в качестве альтернативного источника энергии может радикально изменить будущее человечества – отказ от углеводородов поможет улучшить экологию планеты.

Графеновые аккумуляторы. Перспективы практического применения графена.

Инженеры из Испании разработали графеновые аккумуляторы нового поколения. Они получились на 70% дешевле литиевых аналогов, в два раза легче по весу, а благодаря уникальным электропроводным свойствам графена, могут быть полностью заряжены всего за 9 минут, и этого заряда хватит на 1000 километров пробега электромобилю. Новые батареи уже протестировали две автомобильные компании Германии.

Графеновые аккумуляторы разработаны в Испании

Электромобиль считается весьма перспективным видом транспорта, несмотря на меньшую мощь и скорость, по сравнению с традиционными автомобилями на жидком топливе. Самые современные серийные электромобили на литиевых аккумуляторах требуют для зарядки несколько часов, при этом хватает заряда едва ли на 300 километров. По сравнению с этим, новые графен-полимерные аккумуляторы испанской компании Graphenano, разработанные совместно с учеными из Национального университета Кордовы, выглядят революционным чудо-источником, полностью устраняя недостатки традиционных литий-ионных батарей.

На данный момент Graphenano — ведущий в мире производитель графена в промышленных объемах, и уже наработанный инженерами опыт позволяет назвать их профессионалами на этом революционном пути.

Графен чрезвычайно легок, лист площадью 1 квадратный метр весит 0,77 грамма, он прозрачен, гибок, водонепроницаем, в 200 раз прочнее стали, и при всем при этом не представляет угрозы загрязнения для окружающей среды. После повреждений материал легко восстанавливается. Сверхвысокая электропроводность графена позволяет получить скорость в чипах в 100 раз большую, чем у современных кремниевых чипов. Графен легко проводит тепло, генерирует электроэнергию, и способен менять свои свойства в сочетании с другими материалами.

Графеновые аккумуляторы, принцип действия

В конце 2015 года Graphenano открыли завод площадью более 7000 квадратных метров по производству графен-полимерных аккумуляторов в испанском городе Екла, благодаря объединению усилий с группой химиков из Национального университета Кордовы и компанией Grabat Energy. Было создано специальное оборудование для обеспечения 20 сборочных линий на 80 миллионов ячеек. Выпуск первых аккумуляторов с высокой добавочной стоимостью запланирован на 2016 год. Эти аккумуляторы не будут производить газ и не будут пожароопасными, заявляют в Graphenano, даже короткое замыкание им не будет страшно. Полимер был сертифицирован при сотрудничестве с институтами Декра (Испания) и TUV (Германия). Тестовые результаты уже превысили 1000 Ватт-часов на килограмм для нового графен-полимера. Не удивительно, что Graphenano заключили договора о сотрудничестве со многими лидерами аэрокосмической и автомобильной отраслей. И также с компаниями, занимающимися возобновляемыми источниками энергии.

История открытия графена

В 2004 году русские ученые Константин Новоселов и Андрей Гейм, работающие в Манчестерском университете (Манчестер, Великобритания) смогли получить графен на подложке оксида кремния. Это была стабильная двумерная пленка, благодаря связи с тонким слоем оксида (диэлектрика). Параметры пленок углерода толщиной в один атом (в миллион раз тоньше листа бумаги), такие как электрическая проводимость, эффект Шубникова-де Гааза, и эффект Холла были измерены тогда учеными. Новоселов и Гейм получили за эти передовые работы в 2010 году Нобелевскую премию.

Графеновые аккумуляторы, открытие графена

Ныне графен можно по праву назвать революционным материалом XXI века. Этот вариант соединения углерода является самым тонким, прочным, и обладает наивысшей электропроводностью. Сегодня на исследования графена выделено несколько миллиардов долларов, и по прогнозам ученых, этот материал сможет заменить собою кремний в полупроводниковой промышленности. Графен несомненно перевернет мир технологий в ближайшие годы, не в последнюю очередь еще и потому, что он недорог в производстве, и очень распространен в природе. Каждая из стран имеет его в изобилии.

Из области фантастики в область лабораторных разработок

Говоря о нанотехнологиях, в первую очередь приходят на ум открытие графена и углеродных нанотрубок. Именно с ними связывают ученые прорыв в области электроники и фармакологии в 21 веке. Создание квантовых компьютеров, систем считывания сигналов на клеточном уровне, нанороботов для лечения организма – это только малый перечень открывающихся возможностей. Сейчас эти возможности перешли из области фантастики в область лабораторных разработок.

Особая тема – это микроэлектроника. Современные микропроцессоры и чипы памяти уже преодолевают значение технологических норм в 10 нанометров. Впереди рубеж 4-6 нм. Но чем дальше двигаются разработчики по пути миниатюризации, тем сложнее задачи приходится решать. Инженера вплотную приблизились к физическим пределам кремниевых чипов. Те, кто интересуются современными микропроцессорами, знают, что их быстродействие затормозилось на тактовой частоте около 4 ГГц и дальше не увеличивается. Кремний является прекрасным материалом для микроэлектроники, но обладает существенным недостатком – плохой теплопроводностью. И с ростом тактовой частоты и плотности элементов этот недостаток становится барьером на пути дальнейшего развития микроэлектроники.

К счастью, сегодня появилась реальная возможность использовать альтернативные материалы. Это графен, двухмерная форма углерода и углеродные нанотрубки, которые являются трехмерной кристаллической формой того же углерода. Уже первые результаты исследований привели к созданию графеновых транзисторов, работающих на частоте до 300 ГГц. Причем, опытные образцы сохраняли свои характеристики при температурах 125 градусов по Цельсию.

Перспективы практического применения графена

Открытие графена вызвало реакцию, подобную разорвавшейся бомбы. После десятилетий полной уверенности, что двухмерной модификации углерода не существует, вдруг оказалось, что с помощью достаточно простых процессов его можно получать в неограниченном количестве.

Только зачем?

Дело в том, что подобная модификация углерода обладает свойствами, которые, обычно сдержанные ученые, наделяют эпитетами фантастические, чудесные, уникальные. И им можно поверить. Сотни применений этого материала предложены уже сегодня, и каждую неделю появляется информация о новых возможностях графена. Даже короткий перечень впечатляет: микрочипы с плотностью более 10 миллиардов полевых транзисторов на квадратный сантиметр, квантовые компьютеры, датчики размером несколько нанометров – это только в электронике. А еще аккумуляторные батареи фантастической емкости, фильтры для воды, которые задерживают любые примеси и многое другое. Особые свойства графена позволяют не только эффективно отводить тепло, но и преобразовывать его обратно в электрическую энергию. Учитывая, что графеновая решетка (плоскость) имеет толщину в один атомный слой, несложно предсказать, что плотность элементом на чипе резко возрастет и может достигнуть 10 миллиардов транзисторов на квадратный сантиметр. Уже сегодня реализованы графеновые транзисторы и микросхемы, смесители частоты, модуляторы, работающие на частотах выше 10 ГГц.

Не менее оптимистично относятся разработчики и к применению углеродных нанотрубок в микроэлектронике. На их основе уже реализованы транзисторные структуры, а недавно специалисты IBM продемонстрировали микросхему, на которой было сформировано 10 тысяч нанотрубок. Конечно, сразу углеродные материалы не смогут заменить кремний в микроэлектронике. Но создание гибридных микросхем, в которых используются преимущества обоих материалов, уже выходит на коммерческий уровень. Не за горами тот день, когда в обычном мобильном устройстве появятся микропроцессоры, вычислительная мощь которых будет превышать производительность современных суперкомпьютеров.

Не стоит думать, что все эти применения – дело отдаленного будущего. В гонку практической реализации научного открытия включились гиганты электронной индустрии — корпорация IBM, Samsung и множество коммерческих исследовательских лабораторий. По мнению специалистов, в ближайшее десятилетие графен станет привычным материалом. А некоторые шутят, что Силиконовую долину в Калифорнии придется переименовывать на Графитовую.

Графеновый аккумулятор – современные технологии

Даже те, кто мало разбирается в технике, знают, что любой автономной системе, работа которой связана с электричеством, требуются независимые источники электроэнергии. Это мобильные устройства, транспортные средства, оборудованные аккумуляторами и батареями.

Читайте также:  Гидравлический пресс для гаража: компактный, мобильный и удобный

«Батарейки», широко используемые сейчас, ограничены в объеме и имеют непродолжительный срок службы. Графеновый аккумулятор этих недостатков лишен. В статье пойдет речь о том, что собой представляют такие батареи, как они устроены, какие у них достоинства и недостатки и где их можно найти.

О материале графен

Известно две формы углерода – графит и алмаз. Первый используется в качестве стержней карандашей, алмаз – наиболее прочный материал на всей планете. В 2004 году российские ученые «получили» ранее неизвестную, третью форму – графен.

Сам графен – это вещество пленкообразной структуры, «собранное» из атомов углерода (как гласит википедия). В природных условиях эту двумерную пленку не встретишь. Изготавливается она человеком, для чего требуются повышенное давление и температура.

По факту, это вещество является плоскостью графита, отделенной от общей структуры материала. Атомы углерода графена «объединяются» и получается шестигранная кристаллическая решетка.

Электроны в веществе сохраняют свою подвижность, поэтому открытый в 2004 году материал годится для «внедрения» в полупроводниковые схемы, батареи и нанотехнологии. Особенность графеновых аккумуляторов – они мало весят, при этом имеют рекордную емкость.

Графеновые аккумуляторы

«Инновационный углерод» нашел применение, в первую очередь, в автомобилестроении. Точнее – в производстве электромобилей. Повышенная активность заряженных частиц позволяет увеличить полезную емкость графеновых батарей.

На начальных этапах разработки этих источников питания, в листы графена добавляли литий. Но вещество «бурно» реагировало на воду и другие окислители, поэтому для промышленных задач эта схема оказалась малопригодной.

Литий, контактирующий с водой на открытой местности, приводит к масштабному взрыву. Поэтому такие модификации не устанавливались в автомобили, ведь, если транспортное средство повредится, а вместе с ним и аккумулятор – это может стать причиной возгорания.

Сам процесс производства требовал большого количества лития – вещества, которого на планете не так уж и много.

Принцип действия аккумулятора аналогичен тому, как работают классические батареи в автомобилях с ДВС. Различаются только электрохимические процессы, проходящие в «теле» устройства. Они практически аналогичны реакциям литий-полимерных батарей.

Есть две технологии производства графеновых источников питания:

  • американская модель. Источником реакции выступают кобальтат литий и катод из перемежающихся пластин кремния и графена;
  • российская модель. Магний-графеновая модификация, в которой литиевую соль (анод) заменили на оксид магния (доступное и менее токсичное вещество).

У графена высокая электропроницаемость, а еще он склонен к накоплению электрозаряда. Поэтому в обоих случаях скорость движения ионов между электродами повышается, а вместе с этим и емкость батарей.

Преимущества и недостатки

Если сравнивать с традиционными технологиями, то у графеновых источников питания следующие достоинства:

  • исходное сырье доступно и распространенно. Сейчас графен производят в промышленных масштабах, причем довольно простым способом;
  • малый вес. Масса 1 м 2 графена – менее 1 грамма. Значит, снижается общая масса аккумулятора, что вносит свои коррективы в производство электромобилей;
  • экологически чистое вещество, не оказывающее негативного воздействия на окружающую среду;
  • высокие показатели прочности и водонепроницаемости;
  • поврежденные участки быстро восстанавливаются;
  • проводимость выше, чем у любого доступного сейчас полупроводника;
  • высокая удельная емкость. Если графеновая батарея применяется как источник тока, то электрический автомобиль способен «на ней» проехать 1000 км не подзаряжаясь;
  • технически долговечное вещество, мощность которого не снижается из-за частых циклов зарядки/разрядки;
  • быстро заряжается.

Но и это не самая «страшная» проблема. Дело в том, что до сих пор батареи из графена не производят крупномасштабными партиями.

Устройство

Графеновые АКБ работают за счет той же электрохимической реакции, что присуща распространенным свинцовым батареям, в которых кислотный или щелочной электролит.

Устройство более всего схоже с литий-ионными источниками питания, в которых задействуется твердый электролит.

Единственное, катодом выступает угольный кокс, так как его химический состав наиболее близок к чистому углероду, а графитовый слой заменен графеновым.

Для повышения «вместимости» батареи, ученые начали устанавливать между слоями графена кластеры из кремния. А для повышения скорости зарядки в пластинах графена начали делать небольшие отверстия, 15 – 20 нм (нанометров).

Особенности магний-графенового аккумулятора

Первые магниевые батареи были разработаны испанскими учеными в 2017 году. Графеновые аккумуляторы, в которых электролитом выступает магний, более емкие и быстрее заряжаются.

Нередко это изобретение относят к батареям нового поколения. При этом, они на 77% дешевле и на 50% легче литий-ионных аналогов.

Высокая подвижность ионов позволяет зарядить такой аккумулятор за 8 минут. А максимальной емкости достаточно, чтобы электромобиль смог проехать 1000 км.

Принцип действия любых аккумуляторов – химические процессы окисления и восстановления. Магний, который стоит практически в 20 раз дешевле лития, выбран неслучайно.

Магний, как литий, не взрывоопасен при контакте с жидкостью, также его легче утилизировать. Да и запасов его на планете куда больше.

По мнению ученых, новые магний-графеновые батареи будут иметь емкость в 2,5 раза больше, чем у традиционных литиевых источников питания.

Немецкие автомобильные концерты приняли такую батарею на тестирование. Тест оказался успешным и пошли разговоры об использовании аккумуляторов в промышленности.

Электромобиль, работающий без использования ископаемых источников топлива, не будет таким же быстрым, как транспортное средство на бензине или «дизеле». Но снижается цена питания и обслуживания. А это уже значимый шаг, который еще более отображает перспективность машин на электричестве.

По их мнению, подобные источники питания станут еще безопаснее, более стойкими к возникновению коротких замыканий.

Где купить аккумулятор

Аккумуляторы, сделанные из графена, пока что остаются только в виде проектов. Если они будут реализованы, то получатся батареи, которые смогут в течение года работать без подзарядки. Пока что заряд приходится постоянно пополнять и все знают, сколько примерно заряжаются литий-ионные «пластины».

Достаточно представить, что в одной коробочке, размером с пачку масла, может вмещаться 1 мегаватт энергии – такое изобретение кто-то захочет использовать как оружие с немалой поражающей мощностью. Производители продолжают тестировать новинку на своих автомобильных концернах, доводя ее до «норм».

Углеродные источники питания – технология, которая найдет отклик в будущем, когда будут отлажены все технические тонкости производства. Тогда, может быть, появятся и первые смартфоны с графеновыми аккумуляторами, которые будут заряжаться за несколько минут.

Графеновые аккумуляторы

Развитие электротранспорта подтолкнуло исследователей новых технологий к созданию альтернативных источников питания. Одним из таких видов стал аккумулятор с графеновыми электродами. Рассмотрим, что это такое, принцип работы и устройство.

  1. Материал графен
  2. Перспективы графена
  3. Что такое графеновый аккумулятор
  4. Устройство источника питания
  5. Виды
  6. Достоинства и недостатки
  7. Альтернативные разработки
  8. Развитие производства графеновых батарей

Материал графен

Углеводородный кристалл атомы вещества которого расположены на одной плоскости называют графеном. Лист данного материала имеет толщину не более одного атома, вещество не имеет цвета. Отличительными особенностями графена стали высокая прочность и энергетическая емкость.

Российским ученым удалось синтезировать такое вещество искусственным путем на окисле кремния. Полученная толщина составила значение в миллион раз тоньше обычного листа бумаги.

Многие страны современного мира занимаются созданием поточных производственных линий по изготовлению графена. На базе такого вещества получится создать такие приборы как:

  • сверхтонкие мониторы;
  • приборы на полупроводниках;
  • графеновый аккумулятор.

Интересно знать! Источники питания на основе графена не содержат токсичных примесей и веществ.

Перспективы графена

Широкое распространение данного вещества позволит создавать новые производства и исследовательские центры. Станет возможным применять такой материал на производстве и для хозяйственных нужд. Серийное изготовление графена позволит создавать:

  • линии для производства данного материала;
  • новые модели электромобилей;
  • специализированные энергозаправки;
  • открытие новых электростанций;
  • создание компьютеров компактных размеров;
  • позволит снизить вредные выбросы.

Что такое графеновый аккумулятор

Благодаря открытию углеводородного материала с кристаллами толщиной в один атом, у исследователей возник вопрос создания совершенной аккумуляторной батареи с улучшенными техническими характеристиками.

Устройство источника питания

Принцип работы графеновых источников питания многим напоминает распространенные кислотные аккумуляторы. В процессе протекания химических реакций происходит выработка и накопление электрического тока.

Устройство источников питания на основе графена напоминает литий полимерные АКБ. В настоящее время для того, чтобы создать графен полимерный аккумулятор разработано несколько специальных технологических процессов.

В роли положительного электрода выступает материал, состоящий из пластин графена и кремния. Отрицательным электродом служит в одном случае вещество на основе кобальта, во втором магниевый оксид, имеющий пониженную стоимость. Изготовление таких источников питания в домашних условиях невозможно ввиду сложности технологии производства.

Современные технологии рассматривают два основных направления по разработке графеновых источников питания:

  1. Лития кобальтат применяется в качестве отрицательного электрода. В роли положительно заряженного электрода выступает материал, состоящий из монопленки и графена. Применение таких аккумуляторов не распространено так как их производство обусловлено повышенными затратами, помимо этого, соли на основе лития обладают токсичностью.
  2. Во втором варианте исполнения данных батарей в качестве отрицательного электрода применяют соединения на основе магния. Такие источники питания обладают повышенными полезными характеристиками и имеют пониженную стоимость. Используемые вещества в таких батареях не являются токсичными.

Интересно знать! Магний графеновые батареи являются наиболее перспективным направлением при разработках в этой отрасли.

Достоинства и недостатки

К основным преимуществам данных АКБ следует отнести:

  • уменьшенный вес изделия, за счет применения легких металлов;
  • с использованием современных технологий удалось добиться создания источников питания с малыми размерами;
  • повышенное значение внутренней проводимости;
  • увеличенный срок службы;
  • повышенное значение внутренней емкости и устойчивости к износу;
  • имеют возможность регулировки основных параметров;
  • сравнительно малая стоимость;
  • распространенность кристаллов углеводородов в природе.

К минусам при использовании графеновых АКБ производители относят:

  • Имеют плотность не пригодную для питания мобильной электроники. Аккумулятор, изготовленный для переносных гаджетов, будет иметь относительно большие размеры.
  • Малое число энергозаправочных станций для графеновых батарей.
  • В составе некоторых электродов при изготовлении применяется литий, который является редким металлом.

Альтернативные разработки

Графеновые суперконденсаторы являются одним из альтернативных направлений при разработке источников питания на основе графена. Благодаря новейшим технологиям удалось получить конденсатор повышенной емкости с высокой энергетической плотностью. Причем с увеличением рабочей температуры полезные свойства только улучшаются.

Конденсатор такого типа способен восстанавливать заряд за считанные минуты, зависти это от мощности источника энергии. Производство и исследования графена облегчило создания сверхтонких полупроводников и конденсаторов высокой емкости.

Важно! Толщина графена в полупроводнике может достигать размеров одного атома.

Открытие накопителей с углеродными электродами позволит ускорить широкое использование электротранспорта и миниатюрных электронных устройств.

Развитие производства графеновых батарей

В настоящее время графеновые батареи высокой мощности производят на поточной линии в Испании. Сравнительно дешевые аккумуляторы имеют один существенный недостаток — это большой размер источника питания. Такой тип нашел широкое применение для питания бортовой сети электромобиля, он оказался надежнее и безопаснее своего предшественника литий ионного аккумулятора. В 2017 году испанская производственная компания должна была начать массовое изготовление новых разработок источников питания, но о серийном выходе батарей до сих пор ничего не известно.

Интересно знать! Испания является единственной страной, в которой графеновый аккумулятор производится серийно.

Американские и европейские разработчики находятся на стадии научно-исследовательской работы. Однако ученые из Австрии значительно продвинулись вперед. У них получилось разместить монопленку графена в оболочку из гелия, в результате чего стало возможным сохранить пластины на стабильном расстоянии друг от друга. В результате было предотвращено возможное слипание.

Российские разработки направлены на создание магний графенового аккумулятора повышенной емкости с малыми размерами. О массовом производстве пока информации нет.

Графеновый аккумулятор в настоящее время можно считать новым поколением источников питания. В ближайшем будущем станет возможным заменить автомобильную технику с двигателем внутреннего сгорания на экологически чистый транспорт с питанием от графеновых батарей.

Оцените статью
Добавить комментарий